
The Singular Value Decomposition

Let A ∈ Rm×n. Then there exist orthogonal matrices U ∈ Rm×m, V ∈ Rn×n, and a
diagonal matrix of singular values Σ = diag(σ1, σ2, . . . , σp), where p = min (m,n)
and σ1 ≥ σ2 ≥ · · ·σp ≥ 0, such that

A = UΣV t.

So what?

Recall the two fundamental subspaces associated with any matrix (or linear
transformation) A: The range of A is the subspace of Rm defined as

Range(A) = {y ∈ Rm : y = Ax, for some x ∈ Rn},

and the nullspace of A is the subspace of Rn defined as

Nullsp(A) = {x ∈ Rn : Ax = 0}.

The rank of a matrix A is the dimension of the range of A, and the nullity of A is
the dimension of the nullspace of A. One of the fundamental properties of an m×n
matrix A is

rank(A) + nullity(A) = n.

In an inner product space, this result should be seen as a corollary to another
fundamental result which says that the range of A is the orthogonal complement of
the nullspace of At:

Range(A) = [Nullsp(At)]⊥.

Applying this result to At gives

Range(At) = [Nullsp(A)]⊥.

Back to the SVD: If r = rank(A), then σr > 0 and σr+1 = 0. If we write
U = [U1, U2], and V = [V1, V2], where U1 ∈ Rm×r and V1 ∈ Rn×r, then (the columns
of) U1 form an orthonormal basis (O.B.) for Range(A), U2 an O.B. for Nullsp(At),
V1 an O.B. for Range(At), and V2 an O.B. for Nullsp(A).

It’s all there in the SVD. And more. A matrix of rank s which best approximates A
in the 2-norm is

As ≡
s∑

j=1

σjujv
t
j.

This implies that the singular values tell us about how close A is to matrices of a
given rank (e.g. how close to singular is this square matrix?), and helps us to
quantify the uncertainties in our data.


