The Power Method

Assume that $A \in \mathbb{C}^{n \times n}$ has a n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$. Then any $x \in \mathbb{C}^{n}$ can be represented uniquely as

$$
\begin{equation*}
x=\sum_{i=1}^{n} c_{i} v_{i} . \tag{1}
\end{equation*}
$$

Here we are interested in what (if any) direction $A^{k} x$ heads toward as $k \rightarrow \infty$.
Specifically, we have a sequence $\left\{x_{k}\right\}$ of vectors defined by

$$
\begin{equation*}
x_{0}=x, \quad x_{k}=A x_{k-1}=A^{k} x_{0}, \quad k=1,2,3, \ldots \tag{2}
\end{equation*}
$$

and we would like to know in what direction it is ultimately pointing.
Recall that if v_{i} is an eigenvector of A, then there is a scalar λ_{i}, called an eigenvalue, for which $A v_{i}=\lambda_{i} v_{i}$. Then $A^{k} v_{i}=\lambda_{i}^{k} v_{i}$ (you do the induction). Using (1) (and linearity) we find that

$$
\begin{equation*}
A^{k} x=\sum_{i=1}^{n} c_{i} \lambda_{i}^{k} v_{i} \tag{3}
\end{equation*}
$$

Now suppose that $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|, i=2,3, \ldots, n$. Then

$$
\begin{equation*}
\frac{A^{k} x}{\lambda_{1}^{k}}=c_{1} v_{1}+\sum_{i=2}^{n} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k} v_{i} \tag{4}
\end{equation*}
$$

Here it is clear (yes?) that unless $c_{1}=0, A^{k} x \rightarrow \operatorname{span}\left\{v_{1}\right\}$. Thus we call v_{1} the dominant eigenvector of A. This result is as simple as it is powerful: if v_{1} is the dominant eigenvector of A, then for almost all $x \in \mathbb{C}^{n}$,

$$
x \rightarrow v_{1}
$$

under repeated application of A.
(If this is too analytic for your taste, then change to the basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Under this basis A has coordinates $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$, and $\Lambda^{k} y \rightarrow \operatorname{span}\left\{e_{1}\right\}$ as long as $y(1) \neq 0$.)

The power method consists of scaling iteration (2) to avoid underflow or overflow, and figuring out when to stop. We solve both problems by approximating λ_{1} at each step. The code below (if it terminates) gives a small backward error (i.e. gives an eigenpair for a matrix "close" to A).

```
\(i=\operatorname{argmax}(|x|)\)
\(x=x / x(i)\)
For \(k=1,2, \ldots\) until done
    \(y=A x\)
    \(i=\operatorname{argmax}(|y|)\)
    \(\lambda=y(i)\)
    \(r=y-\lambda x\), if \(\|r\|\) is small enough, then stop
    \(x=y / \lambda\)
```

