
The Power Method

Assume that A ∈ Cn×n has a n linearly independent eigenvectors v1, v2, . . . , vn. Then any
x ∈ Cn can be represented uniquely as

x =

n∑
i=1

civi. (1)

Here we are interested in what (if any) direction Akx heads toward as k →∞.
Specifically, we have a sequence {xk} of vectors defined by

x0 = x, xk = Axk−1 = Akx0, k = 1, 2, 3, . . . (2)

and we would like to know in what direction it is ultimately pointing.

Recall that if vi is an eigenvector of A, then there is a scalar λi, called an eigenvalue, for
which Avi = λivi. Then Akvi = λki vi (you do the induction). Using (1) (and linearity) we
find that

Akx =
n∑

i=1

ciλ
k
i vi. (3)

Now suppose that |λ1| > |λi|, i = 2, 3, . . . , n. Then

Akx

λk1
= c1v1 +

n∑
i=2

ci(
λi
λ1

)kvi (4)

Here it is clear (yes?) that unless c1 = 0, Akx→ span{v1}. Thus we call v1 the dominant
eigenvector of A. This result is as simple as it is powerful: if v1 is the dominant
eigenvector of A, then for almost all x ∈ Cn,

x→ v1

under repeated application of A.

(If this is too analytic for your taste, then change to the basis {v1, v2, . . . , vn}. Under this
basis A has coordinates Λ = diag(λ1, λ2, . . . , λn), and Λky → span{e1} as long as
y(1) 6= 0.)

The power method consists of scaling iteration (2) to avoid underflow or overflow, and
figuring out when to stop. We solve both problems by approximating λ1 at each step. The
code below (if it terminates) gives a small backward error (i.e. gives an eigenpair for a
matrix “close” to A).

i = argmax(|x|)
x = x/x(i)
For k = 1, 2, . . . until done

y = Ax
i = argmax(|y|)
λ = y(i)
r = y − λx, if ‖r‖ is small enough, then stop
x = y/λ


