
The Inverse Power Method

Assume that A ∈ Cn×n has a n linearly independent eigenvectors v1, v2, . . . , vn, and
associated eigenvalues λ1, λ2, . . . , λn, with |λ1| > |λ2| ≥ |λi|, i = 3, 4, . . . , n. Then
(λ1, v1) is a dominant eigenpair of A, and for almost all x ∈ Cn, Akx→ v1, k →∞.

How fast does such an iteration converge? Write x =
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and it is clear (yes?) that the error gets multiplied by about |λ2/λ1| at each step (we
say that the convergence is linear with asymptotic error constant |λ2/λ1|). So the
smaller the ratio |λ2/λ1|, the better, and if |λ1| ≈ |λ2| then we expect very slow
convergence.

Let B ∈ Cn×n have eigenvalues µi labeled so that |µi| ≥ |µi+1|. The power method
applied to B converges to the dominant eigenvector of B (if one exists) with a speed
that depends on |µ2/µ1|.

Now if B = A−1, then the dominant eigenpair of B is (1/λn, vn), and the power
method applied to B converges to vn with a speed that depends on |λn/λn−1|. This
iteration is fast if |λn| is small compared to the other eigenvalues. The power method
applied to A−1 is called the inverse power method.

We now have methods to compute the |largest| and |smallest| eigenvectors of a
matrix A ∈ Cn×n. How fast these methods go depends upon how relatively large or
small the |largest| and |smallest| eigenvalues are. One more observation: if we take
B = (A− sI)−1, then µ1 = λr − s, where λr is the eigenvalue of A that is closest to s.
The dominant eigenpair of B is (1/(λr − s), vr), and the power method applied to B
converges to vr with a speed, ρ, that depends on how close s is to λr relative to the
next closest eigenvalue of A:

ρ =
|λr − s|

min
i 6=r
|λi − s|

. (2)

The power method applied to (A− sI)−1 is called the inverse power method with
shift; it is at the heart of many state-of-the-art methods.

This “shifted inverse power method” is better called the “inverse power kernel”, for
there are many decisions yet to be made about its implementation. For example,
suppose we have an approximation s to λr. Then we might use Gaussian Elimination
with partial pivoting to compute the factorization P (A− sI) = LU . Once this is
done, each iteration of the inverse power method requires only about 2n2 flops
(forsub and backsub). Do we recompute the LU factorization as our approximation
to λr gets better? For the general eigenproblem, it is probably not efficient, but for a
matrix with some special structure it may be efficient. For symmetric matrices, a
reduction to tridiagonal form, followed by an inverse power method with shift, using
a different shift (a Rayleigh quotient) at each iteration, is a standard technique. In
fact, all of our best methods for computing eigenstuff are intimately related to this
inverse iteration.


