f(A) Part 2

Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is a continuous function. We want to investigate here how it makes sense to "extend" f to a function $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$. We know that f in the former sense is a different kind of thing than in the latter sense, but we will use f do denote them both, nonetheless.

This explaination is based on the Jordan canonical form (JCF) of a square matrix. A Jordan block is a $k \times k$ (say) matrix of the form

$$
J=\left[\begin{array}{ccccc}
\lambda & 1 & 0 & \ldots & 0 \\
0 & \lambda & 1 & \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \ldots & \lambda & 1 \\
0 & 0 & \ldots & 0 & \lambda
\end{array}\right]=\lambda I+N
$$

This matrix has one eigenvalue, λ of multiplicity k, and an associated eigenspace of dimension 1 (only one eigenvector for λ). N is nilpotent: $N^{k}=0$. Every square matrix A is similar to a block diagonal matrix with Jordan blocks on its diagonal, called the JCF of A, i.e. there exists $V \in \mathbb{C}^{n \times n}$ such that

$$
V^{-1} A V=J=\left[\begin{array}{ccccc}
J_{1} & 0 & 0 & \ldots & 0 \\
0 & J_{2} & 0 & \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \ldots & 0 & J_{m-1} & 0 \\
0 & 0 & \ldots & 0 & J_{m}
\end{array}\right]
$$

If all of the Jordan blocks are 1×1, then the JCF is the diagonal matrix we dealt with in part 1. But in order get a general definition for $f(A)$, we need to define $f(J)$ for an arbitrary Jordan block. Again, we are led by polynomials. We will need this lemma (which you should prove yourself (the summand index could begin at k)):

$$
p(x)=\sum_{j=0}^{n} a_{j} x^{j} \quad \Longrightarrow \quad \frac{d^{k}}{d x^{k}} p(x) \equiv p^{(k)}(x)=k!\sum_{j=0}^{n}\binom{j}{k} a_{j} x^{j-k} .
$$

Now suppose $J=\lambda I+N$ is $k \times k$. Then $J^{m}=(\lambda I+N)^{m}=\sum_{i=0}^{m}\binom{m}{i} \lambda^{m-i} N^{i}$, and

$$
\begin{aligned}
p(J) & =\sum_{j=0}^{n} a_{j}\left[\sum_{i=0}^{j}\binom{j}{i} \lambda^{j-i} N^{i}\right] \\
& =\sum_{i=0}^{m} N^{i}\left[\sum_{j=0}^{n}\binom{j}{i} a_{j} \lambda^{j-i}\right] \\
& =\sum_{i=0}^{k} N^{i}\left[p^{(i)}(\lambda) / i!\right] .
\end{aligned}
$$

This matrix is upper triangular and constant along each diagonal. The constant along the ith diagonal $p^{(i)}(\lambda) / i$!. Of course, for $f(J)$ we should replace p with f.

We now see that $f: \mathbb{C} \rightarrow \mathbb{C}$ must have n derivatives for $f(A)$ to make sense on the set of all $n \times n$ matrices. We have shown that if f is analytic (differentiable on all of $\mathbb{C})$, then $f(A)$ defined above is a continuous function of the entries of A.

