f(A) Part 1: Diagonalizable A

Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous. We investigate here how it makes sense to "extend" f to a function $f: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}$ which is a continuous function of the entries of a square matrix. While f in the former sense is a different kind of beast than in the latter sense, but we will use f do denote them both, nonetheless.

We consider here the generic (and easier) case: assume A is diagonalizable. Then there is an invertible $V \in \mathbb{C}^{n \times n}$ such that $A V=V \Lambda$ and

$$
V^{-1} A V=\Lambda=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \ldots & 0 \\
0 & \lambda_{2} & 0 & \ldots & 0 \\
\vdots & & \ddots & & \vdots \\
0 & \ldots & 0 & \lambda_{n-1} & 0 \\
0 & 0 & \ldots & 0 & \lambda_{n}
\end{array}\right] \equiv \operatorname{diag}\left(\lambda_{i}\right)
$$

Let p be a polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{d} x^{d}$ and define $p(A)$ as $p(A)=a_{0} I+a_{1} A+\cdots+a_{d} A^{d}$. Then

$$
\begin{aligned}
p(A)=p\left(V \Lambda V^{-1}\right) & =a_{0} I+a_{1} V \Lambda V^{-1}+\cdots+a_{d}\left(V \Lambda V^{-1}\right)^{d} \\
& =V\left(a_{0} I+a_{1} \Lambda+\cdots+a_{d} \Lambda^{d}\right) V^{-1} \\
& =V p(\Lambda) V^{-1} \\
& =V \operatorname{diag}\left(p\left(\lambda_{i}\right)\right) V^{-1} .
\end{aligned}
$$

Now any continuous function can be arbitrarily closely approximated over any finite interval by a polynomial (Weierstrass Approximation Theorem), so this definition for $p(A)$ will essentially fix our definition for $f(A)$ [this is a continuity argument, which basically says that since polynomials are arbitrarily close to any continuous function f, the definition of $f(A)$ must generalize $p(A)$, otherwise $f(A)$ would not be a continuous function of the the entries of $A]$. Therefore however we define $f(A)$, it must satisfy $f(A)=V f(\Lambda) V^{-1}$. But for diagonalizable matrices this is the whole story [the eigenvalues A are continuous functions of the entries of A], for the only definition which generalizes $p(A)$ is

$$
f(A)=f\left(V \Lambda V^{-1}\right)=V f(\Lambda) V^{-1}=V f\left(\operatorname{diag}\left(\lambda_{i}\right)\right) V^{-1}=V \operatorname{diag}\left(f\left(\lambda_{i}\right)\right) V^{-1}
$$

Notice that $f(A)$ depends only on $f\left(\lambda_{i}\right), i=1: n$, and in fact $f(A)=g(A)$ for any functions f and g such that $f\left(\lambda_{i}\right)=g\left(\lambda_{i}\right), i=1: n$. But wait! That means $f(A)=p(A)$ for any polynomial interpolator of f on the nodes $\lambda_{i}, i=1: n$. Specifically, $f(A)=p_{A, f}(A)$, where $p_{A, f}$ is the interpolating polynomial of degree $n-1$ or less for $\left(\lambda_{i}, f\left(\lambda_{i}\right)\right), \quad i=1: n$.

This is almost the whole story for diagonalizable A; but there is a snag. Do you see the problem with our definition? $A \in \mathbb{R}^{n \times n}$ may have non-real (complex) eigenvalues, but we said $f: \mathbb{R} \rightarrow \mathbb{R}$, so it may not make sense to talk about $f\left(\lambda_{i}\right)$ if $\lambda_{i} \notin \mathbb{R}$. We will take the easy way out of this dilemma, by requiring that $f: \mathbb{C} \rightarrow \mathbb{C}$ makes sense. We will need to restrict f again as we consider nondiagonalizable matrices...

