Floating Point Numbers

Most numbers cannot be represented in a computer. Those that are not representable are approximated by a relatively small few that are. We will let the floating point approximation of x be called the float of x and write it as $\mathrm{fl}(x)$. A floating point number represents the whole interval of reals near it. We can bound the length of this interval, and therefore the relative error that is made when approximating a number by its float. We assume that floating point numbers have the form

$$
\bar{x}= \pm 0 . b_{1} b_{2} \ldots b_{t} \times 2^{e}, \quad \text { where } \quad e_{n} \leq e \leq e_{p} \text { and } b_{k} \text { is } 0 \text { or } 1, \text { but } b_{1}=1
$$

Think of it as a (base-2) fraction times 2^{e}. Numbers too |large| for this representation are said to overflow, and numbers too |small| are said to underflow. Since we have allotted t bits for the fractional part, the distance between \bar{x} and an adjacent float is no more than 2^{e-t}. Dividing this by \bar{x} gives an upper bound on the relative distance between any two floats: 2^{1-t}. We define the machine precision, μ, to be half of this quantity: For a floating point system with a t bit fractional part, the machine precision is $\mu=2^{-t}$.

The Floating Point Representation Theorem.

Suppose x is a real number which is in the range of the floating point system (doesn't underflow or overflow). Then

$$
\mathrm{fl}(x)=x(1+\epsilon), \quad \text { where } \quad|\epsilon| \leq \mu
$$

This is a statement about relative error, and can also be written as

$$
\frac{|x-\mathrm{fl}(x)|}{|x|} \leq \mu
$$

The set of floats is not closed under arithmetic operations. For example, when we add two floats, the result is not necessarily a float, but will instead be represented by its float. Computers today follow an industry standard called the IEEE 754, which among many other things guarantees the following:

The Fundamental Axiom of Floating Point Arithmetic.

Let x op y be some arithmetic operation. That is, op is one of,,$+- \times$ or \div. Suppose x and y are floats and that x op y doesn't underflow or overflow. Then

$$
\mathrm{f}(x \text { op } y)=(x \text { op } y)(1+\epsilon), \text { where }|\epsilon| \leq \mu
$$

The geometry is simple: When doing arithmetic with floats, we always get the float closest to the answer. But be careful: this is a statement about floats; real numbers need to be represented by floats before we can do the arithmetic!

