
The Taylor Polynomial

We like polynomials mostly for their flexibility and simplicity. You know all about
the simplicity: they are as smooth as you please, easy to differentiate and integrate,
the polynomials of degree less than n form a vector space of dimension n, the
product of polynomials is a polynomial, a polynomial of degree n has exactly n
roots, etc., etc. An example of the flexibility of polynomials is the

Weierstrass Approximation Theorem:
If f is any function continuous over any finite inverval [a, b], then for any ε > 0 there
is a polynomial p which satisfies |p(x) − f(x)| < ε for all x ∈ [a, b].

If you don’t yet appreciate this statement, draw a picture for this theorem (with an
f that has corners). We even have constructive proofs for this theorem. But this
page is about the Taylor polynomial. This polynomial is not so much about
approximating on an interval, but rather focusing on a specific point. The
statement is as follows:

Taylor Polynomial: If f has n+1 continuous derivatives on [a, b], and x0 ∈ [a, b],
then for each x ∈ (a, b), there is a ξ = ξ(x) between x and x0 such that

f(x) = Pn(x) + Rn(x), where

Pn(x) =
n∑

j=0

f (j)(x0)

j!
(x − x0)

j, and Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x − x0)

(n+1).

Pn is the Taylor polynomial for f about x0, and Rn(x) is its remainder term (or
truncation error term). Notice that Pn is the polynomial (of degree n or less) that
satisfies

P (j)
n (x0) = f (j)(x0), j = 0, 1, . . . , n,

i.e., at x0, Pn and its first n derivatives match f and its first n derivatives.

An equivalent way to write Pn is with the parameterization x = x0 + h, giving

f(x0 +h) = f(x0)+hf ′(x0)+
h2

2!
f ′′(x0)+ · · ·+ hn

n!
f (n)(x0) +

hn+1

(n + 1)!
f (n+1)(ξ).

Finally, to boil everything down to its essence, if f is smooth enough on [a, b], there
is a polynomial Pn, of degree n, such that for all x ∈ [a, b], (with h = x − x0)

f(x) = Pn(x) + O(hn+1).


