
Solving Equations in one Real Variable

We will study several methods for solving a fundamental problem in applied math

f(x) = 0.

Here we assume that f is a continuous real-valued function of a real variable, so we
would like to find some real number, say x∗, such that f(x∗) = 0. We will call x∗ a
zero or root of f . If f is simple enough (and you are lucky enough), then it may be
possible to find x∗ analytically, that is, write a formula. But in the vast majority of
cases the solution cannot be written as a formula, and iterative numerical
techniques are needed.

Note that any equation in one variable, say g(x) = h(x) can be changed into
f(x) = 0. There are many ways to do this, and no best way, in general. For example,
ex − 1 = cos (x) could be turned into f(x) = 1 + cos (x)− ex = 0, or could also be
turned into f(x) = x− cos−1 (ex − 1) = 0; in either case the solution to f(x) = 0 is
also a solution to ex − 1 = cos (x). Another common form (that we won’t talk about
in this class) is F (x) = x; solutions to this problem are called fixed points of F , and
we can always turn root-finding problems into fixed-point problems, and vice-versa.

We will survey several root finding methods. There is no single best method; some
are faster than others, some require a good guess, some require a smooth function,
etc. You will have some choice in matching method to problem. Of the many
properties we might use to describe a method, we will compare by generality and
cost. A method which only works for polynomials is not as general as one which
works for all continuous functions. Method A is more general than method B if A
can solve everything B can solve, and more. Generality is a good quality, but it
usually comes at a cost, so for example, the method that only works for polynomials
will probably solve a polynomial problems faster than the more general method.
Generality and cost usually work against each other in this way.

We usually think of cost in terms of memory requirements and time requirements.
For the single variable problem at hand, memory requirements are usually trivial, so
we will measure cost by computer time. But we don’t know f , and we don’t know
what kind of computer our program will run on, so how do we measure computer
time? We assume that evaluating f requires significantly more computer time than
adding or multiplying several numbers, so the time required to solve f(x) = 0 is
roughly the time required to evaluate f multiplied by the number of evaluations.
Therefore our unit of cost will be 1 function evaluation. All of our methods will
assume that we can evaluate f at any float near some initial guess, and we assume
the user will provide a subroutine that does this. Our cost, then, is the number of
calls to that subroutine.


