Quadrature

Numerical quadrature is the computation of the area (or volume, etc.) of a region bounded by one or more functions; in one variable it is the evaluation of

$$
I \equiv \int_{a}^{b} f(x) d x
$$

Let's assume (i) that f is integrable on $[a, b]$ and (ii) that we can evaluate f at any point in (a, b). An important class of commonly used formulas for approximating I can be derived from the Lagrange interpolation result:

$$
f(x)=P_{n}(x)+R_{n}(x), \text { where } R(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)
$$

$x_{j} \in(a, b), j=0,1, \ldots, n$, and $\xi=\xi(x) \in(a, b)$.
Integrating gives

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b} P_{n}(x) d x+\int_{a}^{b} R_{n}(x) d x
$$

which yields a family of quadrature formulae

$$
\int_{a}^{b} f(x) d x \approx \int_{a}^{b} P_{n}(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right)
$$

where

$$
c_{i}=\int_{a}^{b} L_{n i}(x) d x
$$

If f is smooth enough, the error in this approximation is $\int_{a}^{b} R_{n}(x) d x$.
If we discretize $[a, b]$ into $n+1$ equally spaced nodes, the integrals giving the c_{i} can be evaluated analytically a priori, to give quadrature rules. If we let $h=(b-a) / n$ and $x_{j}=a+j h, j=0,1, \ldots, n$, then a few of the closed Newton-Cotes rules are

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\frac{b-a}{2}(f(a)+f(b))-\frac{h^{3}}{12} f^{\prime \prime}\left(\xi_{1}\right) & & \text { (Trapezoidal Rule, } n=1) \\
& =\frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)-\frac{h^{5}}{90} f^{(4)}\left(\xi_{2}\right) & & \text { (Simpson's Rule, } n=2)
\end{aligned}
$$

If we let $h=(b-a) /(n+2)$, and $x_{j}=a+(j+1) h, j=0,1, \ldots, n$, we get the open Newton-Cotes formulae. This set of nodes does not include a or b and might be useful if there is a singularity at an endpoint:

$$
\begin{array}{rlrl}
\int_{a}^{b} f(x) d x & =\frac{b-a}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right)+\frac{3 h^{3}}{4} f^{\prime \prime}\left(\xi_{1}\right) & (n=1) \\
& =\frac{b-a}{3}\left(2 f\left(x_{0}\right)-f\left(x_{1}\right)+2 f\left(x_{2}\right)\right)+\frac{14 h^{5}}{45} f^{(4)}\left(\xi_{2}\right) & & (n=2)
\end{array}
$$

The error terms have formulae that depend on the parity of n and whether open or closed, but they all look something like the closed rule with n-even:

$$
R(f, n)=\frac{h^{n+3} f^{(n+2)}(\xi)}{(n+2)!} \int_{0}^{n} t \prod_{k=0}^{n}(t-k) d t, \quad \xi \in(a, b)
$$

