
QR Iterations

Consider the iteration
QiRi ← Ai

Ai+1 ← RiQi

Here we have first computed the QR factorization of Ai, and then reversed their
product to form Ai+1. From Ai = QiRi we have Ri = Qt

iAi, and substituting that
into Ai+1 = RiQi gives

Ai+1 = Qt
iAiQi

and thus the QR step is a similarity transformation!

If the eigenvalues of A are all real, then this iteration almost always converges to an
upper triangular matrix T . In this limit, the eigenvalues of T (and hence A, right?)
are t11, t22, . . . tnn. T is called a Schur form for A and the eigenvectors of T are
Schur vectors of A. Every matrix is unitarily similar to an upper triangular matrix,
and T = Q∗AQ is called a Schur decomposition of A.

As it stands, this QR iteration requires O(n3) flops per iteraton. We can reduce this
by an order of magnitude by first reducing A to Hessenberg form H0 = QtAQ. The
following iteration preserves the Hessenberg form, and if we use a Householder (or
Givens) QR factorization it requires only O(n2) flops:

QiRi ← Hi

Hi+1 ← RiQi

Notice that if a Hessenberg matrix H has hk+1,k = 0, then the eigenproblem
decouples: it is a block triangular matrix, and the eigenvalues of H are the union of
the eigenvalues of the diagonal blocks (which are Hessenberg). A Hessenberg matrix
for which none of the subdiagonal elements are zero is called unreduced.

Now if λ is an eigenvalue of an unreduced Hessenberg matrix H, then the QR
factorization QR = H −λI will have rnn = 0 (right?), and thus Hnew = RQ+λI will
have last row λet

n. So what? Hnew = QtHQ is a reduced Hessenberg matrix: we just
decoupled λ! Now we don’t usually know λ a priori, but we can speed convergence
of the QR iterations by shifting Hi at each step by an approximate eigenvalue:

QiRi ← Hi − siI
Hi+1 ← RiQi + siI

This iteration is one of the most used methods to compute the eigenvalues and
eigenvectors of symmetric (or Hermitian) matrices. In this case, H is both upper
and lower Hessenberg, (called tridiagonal) and has only real eigenvalues.
Furthermore, the QR iteration in this case requires only O(n) flops.

For nonsymmetric matrices we still have to address complex eigenvalues and the
added cost complex arithmetic...


