
Projections

With the inner product <x, y>, we have angles (<x, y>= ‖x‖2‖y‖2 cos (θ)), and can
speak of orthogonality: x ⊥ y ⇐⇒ <x, y>= 0. Here we will consider the standard
inner product for Rn: <x, y> ≡ xty, but more general inner products can be very
useful in many applications and algorithm development.

If S is a subspace of Rn (write S ≤ Rn), we say x ⊥ S if x is orthogonal to every
element of S. The subspace S⊥ ≤ Rn is called the orthogonal complement of S

S⊥ ≡ {x ∈ Rn : x ⊥ S},

and Rn = S ⊕ S⊥ is a direct sum decomposition of Rn into complementary
subspaces in such a way that each x ∈ Rn has the unique factorization x = u + v,
with u ∈ S and v ∈ S⊥. In this setting, u is the orthogonal projection of x onto S.

In this note, we will be looking at a transformation P , which satisfies

∀x ∈ Rn, Px = u, the orthogonal projection of x onto S.

If x ∈ S, then we should have Px = x (right?), so P should satisfy P 2 = P , with
Range(P ) = S. The requirement that Px = u ⊥ v, with u ∈ S and v ∈ S⊥,
combined with xty = ytx forces P to be self-adjoint (in matrix language over R,
P t = P ). Any linear transformation P which satisfies

1. Range(P ) = S,

2. P 2 = P, and

3. P t = P

is called an orthogonal projector onto S. If Q is another orthogonal projector onto
S, then Qx = Q(u + v) = u = Px, ∀x ∈ Rn, and hence Q = P and we see that the
orthogonal projector onto a subspace is unique. If we have a basis, then we should
expect to be able to find a matrix representation for P ; call it P . Let X have
linearly independent columns spanning S. Now (scratch paper handy?)
PX = X ⇒ X tPX = X tX, Range(P )=Span(X)⇒ P = XM for some M , P = P t

⇒ XM = M tX t, P = P 2 ⇒ P = XMM tX t, giving MM t = (X tX)−1 so that

P = X(X tX)−1X t.

X tX is nonsingular, so the derivation and formula are perfectly reasonable, but if
the columns of V form an orthogonal basis for S, then V tV = I, in which case

P = V V t.

Now from x = Px⊕ v, we see that v = (I − P )x, and (check the properties) the
orthogonal projector for S⊥ is I − P .


