Polynomial Evaluation

Suppose we have a real polynomial p in standard form, that is, we know its coefficients in the standard ordered basis $1, x, x^{2}, \ldots, x^{n}$, that is, we know the a_{i} in

$$
p(x)=\sum_{i=0}^{n} a_{i} x^{i} .
$$

If $s \in \mathbb{R}$, then how many operations are needed to compute $p(s)$? Think about it for a while before you read on. It turns out that we can do it with n multiplications and n additions. Here is an example:

$$
7 s^{4}+2 s^{3}-5 s^{2}+4 s-3=(((7 s+2) s-5) s+4) s-3
$$

The general iteration below gives $b_{0}=p(s)$:

$$
b_{n}=a_{n} ; \quad b_{j-1}=s b_{j}+a_{j-1}, \quad j=n, n-1, \ldots, 2,1 .
$$

It's called Horner's method, nested multiplication, or synthetic division. There are faster algorithms for evaluating $p(s)$ if s is complex, or if s is a matrix, or if we want to evaluate p at several places at the same time, etc., but this is an optimal algorithm for evaluating a real polynomial at a single real number.

It is called synthetic division because of a division procedure (known in China at least 500 years before Horner) which gives the b_{j} as auxilliary quantities. We can see the division by forming the polynomial $q(x)=b_{1}+b_{2} x+\cdots+b_{n} x^{n-1}$. Then

$$
p(x)=(x-s) q(x)+b_{0},
$$

giving the quotient q and the remainder b_{0} in $p(x) /(x-s)$.
As a little bonus, this gives us a formula for $p^{\prime}(s)$:

$$
p^{\prime}(x)=(x-s) q^{\prime}(x)+q(x),
$$

so that $p^{\prime}(s)=q(s) \ldots$
So the best way to evaluate a polynomial at s is to divide it by $(x-s)$. This theory presents another opportunity for numerical analysts. Suppose we have one root, say s, of a polynomial p of degree n. If we want to compute all n roots of p we might now divide it by $(x-s)$ to get the remainder polynomial q as above. Since (presumably) s is a root we have

$$
p(s)=(x-s) q(x)+0,
$$

and the $n-1$ roots of p which we still desire are precisely the $n-1$ roots of q. Now we can try to find a root of $q \ldots$ This process of dividing out a root to get a smaller problem of the same type is called deflation. While we need to take care in its implementation, deflation is one of the fundamental tools for modern scientific computation.

