
Polynomial Evaluation

Suppose we have a real polynomial p in standard form, that is, we know its coefficients
in the standard ordered basis 1, x, x2, . . . , xn, that is, we know the ai in

p(x) =
n∑

i=0

aix
i.

If s ∈ R, then how many operations are needed to compute p(s)? Think about it for a
while before you read on. It turns out that we can do it with n multiplications and n
additions. Here is an example:

7s4 + 2s3 − 5s2 + 4s− 3 = (((7s + 2)s− 5)s + 4)s− 3.

The general iteration below gives b0 = p(s):

bn = an; bj−1 = sbj + aj−1, j = n, n−1, . . . , 2, 1.

It’s called Horner’s method, nested multiplication, or synthetic division. There are
faster algorithms for evaluating p(s) if s is complex, or if s is a matrix, or if we want to
evaluate p at several places at the same time, etc., but this is an optimal algorithm for
evaluating a real polynomial at a single real number.

It is called synthetic division because of a division procedure (known in China at least
500 years before Horner) which gives the bj as auxilliary quantities. We can see the
division by forming the polynomial q(x) = b1 + b2x + · · ·+ bnx

n−1. Then

p(x) = (x− s)q(x) + b0,

giving the quotient q and the remainder b0 in p(x)/(x− s).

As a little bonus, this gives us a formula for p′(s):

p′(x) = (x− s)q′(x) + q(x),

so that p′(s) = q(s)...

So the best way to evaluate a polynomial at s is to divide it by (x− s). This theory
presents another opportunity for numerical analysts. Suppose we have one root, say s,
of a polynomial p of degree n. If we want to compute all n roots of p we might now
divide it by (x− s) to get the remainder polynomial q as above. Since (presumably) s
is a root we have

p(s) = (x− s)q(x) + 0,

and the n− 1 roots of p which we still desire are precisely the n− 1 roots of q. Now we
can try to find a root of q... This process of dividing out a root to get a smaller problem
of the same type is called deflation. While we need to take care in its implementation,
deflation is one of the fundamental tools for modern scientific computation.


