Least Squares Polynomials

Suppose we want to approximate the set of data (z1,y1), (z2,y2), ..., (Tn, yn) with a
polynomial of degree less than or equal to d. In the least squares sense, the answer is the
polynomial p(x) = Z?:o cjz?, whose coefficients are determined from
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There are lots of ways to compute p; one is to use the standard ordered basis as above.
Let g(c) = >0 (yi — Z?:o cjzl)?. Requiring Vg = 0 gives:
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These are the normal equations for the discrete linear least squares polynomial problem.

If we define z = (z1,72,...,7,) and 2% = (2,25, ..., 2%), then these normal equations

can be written as
Hc = f, where

H= [Mﬂ%;m where hy; =S p_jaizl =2t - 2L, and f=[fi, f; = Z?:l ac;'-yj =gk .y,
Notice that ! is the i row of an n x (d + 1) Vandermonde matrix V, and that Hc = f
can also be written as VVe = Viy.

Now suppose we want a polynomial approximation to a function y = y(z), integrable over
an inverval [a,b]. We can define a degree d least squares polynomial p whose coefficients
satisfy
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and proceed as above. Let g(c) = fb(y(x) — Z;'l:o cjz?)?dz. Setting Vg = 0:
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giving the continuous least squares normal equations
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Let H = [hij]zd,j:m where h;; = f: 2 Hdr =< 2,27 >, and f; = ff rly(x)dr =< a2ty >,
and the normal equations are
Hc=f.



