## Least Squares Polynomials

Suppose we want to approximate the set of data $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with a polynomial of degree less than or equal to $d$. In the least squares sense, the answer is the polynomial $p(x)=\sum_{j=0}^{d} c_{j} x^{j}$, whose coefficients are determined from

$$
\min _{d e g p \leq d} \sum_{i=1}^{n}\left(y_{i}-p\left(x_{i}\right)\right)^{2} \equiv \min _{c_{0}, c_{1}, \ldots, c_{d}} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{d} c_{j} x_{i}^{j}\right)^{2} .
$$

There are lots of ways to compute $p$; one is to use the standard ordered basis as above.
Let $g(c)=\sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{d} c_{j} x_{i}^{j}\right)^{2}$. Requiring $\nabla g=0$ gives:

$$
2 \sum_{i=1}^{n}\left(y_{i}-\sum_{j=0}^{d} c_{j} x_{i}^{j}\right)\left(-x_{i}^{k}\right)=0, \quad k=0,1, \ldots, d
$$

or

$$
\sum_{j=0}^{d} c_{j} \sum_{i=1}^{n} x_{i}^{k+j}=\sum_{i=1}^{n} x_{i}^{k} y_{i}, \quad k=0,1, \ldots, d
$$

These are the normal equations for the discrete linear least squares polynomial problem.
If we define $x \equiv\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $x^{\underline{k}} \equiv\left(x_{1}^{k}, x_{2}^{k}, \ldots, x_{n}^{k}\right)$, then these normal equations can be written as

$$
H c=f, \text { where }
$$

$H=\left[h_{i j}\right]_{i, j=0}^{d}$, where $h_{i j}=\sum_{k=1}^{n} x_{k}^{i} x_{k}^{j} \equiv x^{\underline{i}} \cdot x^{\underline{j}}$, and $f=\left[f_{i}\right], f_{i}=\sum_{j=1}^{n} x_{j}^{i} y_{j} \equiv x^{\underline{k}} \cdot y$. Notice that $x^{\underline{i}}$ is the $i^{\text {th }}$ row of an $n \times(d+1)$ Vandermonde matrix $V$, and that $H c=f$ can also be written as $V^{t} V c=V^{t} y$.

Now suppose we want a polynomial approximation to a function $y=y(x)$, integrable over an inverval $[a, b]$. We can define a degree $d$ least squares polynomial $p$ whose coefficients satisfy

$$
\min _{c_{0}, c_{1}, \ldots, c_{d}} \int_{a}^{b}\left(y(x)-\sum_{j=0}^{d} c_{j} x^{j}\right)^{2},
$$

and proceed as above. Let $g(c)=\int_{a}^{b}\left(y(x)-\sum_{j=0}^{d} c_{j} x^{j}\right)^{2} d x$. Setting $\nabla g=0$ :

$$
\left.\int_{a}^{b} 2\left(y(x)-\sum_{j=0}^{d} c_{j} x^{j}\right)\right)\left(-x^{k}\right)=0, \quad k=0,1, \ldots, d,
$$

giving the continuous least squares normal equations

$$
\sum_{j=0}^{d} c_{j} \int_{a}^{b} x^{k+j} d x=\int_{a}^{b} x^{k} y(x) d x, \quad k=0,1, \ldots, d
$$

Let $H=\left[h_{i j}\right]_{i, j=0}^{d}$, where $h_{i j}=\int_{a}^{b} x^{i+j} d x \equiv<x^{i}, x^{j}>$, and $f_{i}=\int_{a}^{b} x^{i} y(x) d x=<x^{i}, y>$, and the normal equations are

$$
H c=f .
$$

