Interpolating Polynomials

Suppose we are given a set of $n+1$ points $\left(x_{j}, y_{j}\right), \quad j=0,1, \ldots, n$, with the x_{j} 's distinct. Can we find a polynomial P which passes through, or interpolates, these points? Indeed, there are infinitely many. Let's look at what we are asking. Write P as

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{m} x^{m} .
$$

Notice that we have $m+1$ coefficients available to satisfy our $n+1$ interpolation conditions, so let's run with $m+1=n+1$ and see what happens.

The interpolation conditions are $P\left(x_{j}\right)=y_{j}, \quad j=0,1, \ldots, n$, so for each j we get a linear equation in the a_{j} 's:

$$
a_{0}+a_{1} x_{j}+a_{2} x_{j}^{2}+\cdots+a_{n} x_{j}^{n}=y_{j} .
$$

Writing these equations $n+1$ equations in matrix notation gives

$$
V a=y
$$

where $a=\left(a_{0}, a_{1}, \ldots, a_{n}\right)^{t}, y=\left(y_{0}, y_{1}, \ldots, y_{n}\right)^{t}$, and $V=\left[x_{i}^{j}\right]_{i, j=0}^{n}$ is called a Vandermonde matrix. It is easy (but tedious) to show that the determininant of V is $\prod_{i>j}\left(x_{i}-x_{j}\right)$, so distinct nodes make V nonsingular. Therefore $V a=y$ has a unique solution representing the unique interpolating polynomial of degree $\leq n$.

There are many ways to represent this polynomial. We have just shown what it looks like in the standard ordered basis. There are a few other important polynomial bases for this problem. We will investigate the Lagrange basis; it is the most natural, as you will see. Let's define a set of polynomials

$$
L_{n k}(x)=\prod_{i=0, i \neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}}
$$

When restricted to the nodes, each of these polynomials is a delta function:

$$
L_{n k}\left(x_{j}\right)=\delta_{j k}= \begin{cases}0 & , \\ 1, & j \neq k \\ 1 & j=k\end{cases}
$$

We call the $L_{n k}(x)$ Lagrange basis functions, and the representation

$$
P(x)=\sum_{i=0}^{n} y_{i} L_{n i}(x)
$$

the Lagrange form of the interpolator. You check that $P\left(x_{j}\right)=y_{j}, j=0,1, \ldots, n$.
Associated with the interpolating polynomial is the following error formula, which is valid for any function $f \in C^{(n+1)}([a, b])$, where $[a, b]$ is any interval containing the nodes.

$$
f(x)=P(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right), \quad \xi \in(a, b)
$$

