Numerical Differentiation is Easy

Numerical differentiation is the computation of a slope, the instantaneous rate of change of a function at a point, the quantity

$$
f^{\prime}(c) \equiv \lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} .
$$

Let's assume (i) that f is differentiable on an interval (a, b) containing c, and (ii) that we can evaluate f at any point in (a, b). All of the commonly used formulas for approximating $f^{\prime}(c)$ (and $f^{\prime \prime}$, etc.) can be derived from the Lagrange interpolation result:

$$
f(x)=P_{n}(x)+R_{n}(x), \text { where } R(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right),
$$

$x_{j} \in(a, b), j=0,1, \ldots, n$, and $\xi=\xi(x) \in(a, b)$.
Differentiating gives

$$
f^{\prime}(x)=P_{n}^{\prime}(x)+R_{n}^{\prime}(x),
$$

which yields the $(n+1)$-point finite difference formulae

$$
f^{\prime}(c) \approx P_{n}^{\prime}(c)
$$

If f is smooth enough, the error in this approximation is $R_{n}^{\prime}(c)$, and

$$
R_{n}^{\prime}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left[\sum_{i=0}^{n} \prod_{j \neq i}\left(x-x_{j}\right)\right]+\left[\frac{f^{(n+2)}(\xi) \xi^{\prime}(x)}{(n+1)!}\right] \prod_{j=0}^{n}\left(x-x_{j}\right) .
$$

The second term above is rather mysterious (ξ differentiable? Yes!), but we can simplify the analysis by making x one of the nodes:

$$
f^{\prime}\left(x_{i}\right)=P^{\prime}\left(x_{i}\right)+\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{j \neq i}\left(x_{i}-x_{j}\right)
$$

The 5 differentiation rules below all use the formula above with $c=x_{0}$ and taking the nodes to be evenly spaced with spacing h. They are just a few of many, and you can easily make up your own (e.g., if you do not have uniformly spaced nodes).

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\frac{1}{h}\left[f\left(x_{0}+h\right)-f\left(x_{0}\right)\right]-\frac{h}{2} f^{\prime \prime}\left(\xi_{2}\right) \\
& =\frac{1}{2 h}\left[-3 f\left(x_{0}\right)+4 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right]+\frac{h^{2}}{3} f^{(3)}\left(\xi_{3 b}\right) \\
& =\frac{1}{2 h}\left[f\left(x_{0}+h\right)-f\left(x_{0}-h\right)\right]-\frac{h^{2}}{6} f^{(3)}\left(\xi_{3 c}\right) \\
& =\frac{1}{12 h}\left[-25 f\left(x_{0}\right)+48 f\left(x_{0}+h\right)-36 f\left(x_{0}+2 h\right)+16 f\left(x_{0}+3 h\right)-3 f\left(x_{0}+4 h\right)\right]+\frac{h^{4}}{5} f^{(5)}\left(\xi_{5 b}\right) \\
& =\frac{1}{12 h}\left[f\left(x_{0}-2 h\right)-8 f\left(x_{0}-h\right)+8 f\left(x_{0}+h\right)-f\left(x_{0}+2 h\right)\right]+\frac{h^{4}}{30} f^{(5)}\left(\xi_{5 c}\right)
\end{aligned}
$$

The $3^{\text {rd }}$ and $5^{\text {th }}$ of these are called central-difference formulas, the others are forward-difference if $h>0$, and backward-difference if $h<0$. Notice that the central difference formulas have |smaller| weights and smaller error coefficients, and that an $(n+1)$-point method has error $O\left(h^{n}\right)$.

This may have been easy, but the title is a lie. Please put on (or adjust) your numerical analysis hat and reconsider assumption (ii), above...

