## Normal Equations

If $b$ is not in the column space of $A$, then $A x=b$ has no solution; the system is inconsistent. This is typical if $A$ is $m \times n$ with $m>n$, which we will assume here. Let us also assume that $A$ has full rank. Since $A x=b$ has no solution, one may reasonably be interested in finding a vector $x$ which minimizes the difference between $b$ and $A x$ :

$$
\begin{equation*}
\min _{x}\|A x-b\| . \tag{1}
\end{equation*}
$$

Equivalently: find a vector $y$ in the column space of $A$ which is closest to $b$ (then $x$ is the unique solution of the consistent system $A x=y$ ). There are many norms that we might use in (1), but if we use the norm induced by the dot product, then (1) is called the discrete linear least squares problem:

$$
\begin{equation*}
\min _{x}\|A x-b\|_{2} . \tag{2}
\end{equation*}
$$

Now suppose that we want to find an element of $S \leq \mathbb{R}^{n}$ that is closest to some vector $b$ (which is typically not in $S$ ). Our intuition says that we "drop a perpendicular" from b to $S$, and that is exactly right: Let $y \in S$ be such that $b-y \perp S$, and consider any vector $w=y+\alpha z \in S$.

$$
\begin{aligned}
\|b-w\|_{2}^{2} & =(b-w)^{t}(b-w) \\
& =(b-y)^{t} b+\alpha^{2} z^{t} z
\end{aligned}
$$

which is minimized if $\alpha z=0$ ("Calculus? We don't need no stinking calculus"). Therefore a vector in $S$ which minimizes $\|b-y\|_{2}$ must satisfy $b-y \perp S$. In the language of orthogonal projections:
if $b=b_{S}+b_{S^{\perp}}$ is the direct sum representation of $b$ in $S \oplus S^{\perp}$, then $y=b_{S}$.
Now we can apply this to (2) by letting $S=\operatorname{ColSp}(\mathrm{A})$. That is, we want $y=A x$, and therefore $b-A x \perp \operatorname{ColSp}(\mathrm{~A})$. Clearly this requires $(b-A x)^{t} A=0$ (right?). Transposing this equation gives

$$
\begin{equation*}
A^{t} A x=A^{t} b, \tag{3}
\end{equation*}
$$

and this system of equations is called the normal equations for (2).
Since the columns of $A$ are linearly independent, $A z=0 \Leftrightarrow z=0$; and thus $A^{t} A$ is nonsingular. Therefore the normal equations, and hence the least squares problem, has a unique solution. In the language of projections: the (unique) orthogonal projector onto the $\operatorname{ColSp}(A)$ is $P=A\left(A^{t} A\right)^{-1} A^{t}$, giving $y=P b=A\left(A^{t} A\right)^{-1} A^{t} b$, and from $y=A x$, we take $x=\left(A^{t} A\right)^{-1} A^{t} b$. This is just the normal equations solved.

Notice that if $Q$ is any matrix whose columns form a basis for $\operatorname{ColSp}(\mathrm{A})$, then we want $(b-A x)^{t} Q=0$ (right?), so a more general normal equation is $Q^{t} A x=Q^{t} b$. Thus, while providing $a$ route to the LS solution, the normal equations (3) are not the only route to its computation...

