Convergence of Newton's method

Newton's method uses a linear Taylor approximation to the function f to approximate its root. Let p be such that $f(p)=0$, and let p_{k} be an approximation to p. Let us use the abbreviation $f_{k} \equiv f\left(p_{k}\right)$ throughout. If we take as our next approximation to p the root of the tangent line passing through $\left(p_{k}, f_{k}\right)$ then we get Newton's method:

$$
p_{k+1}=p_{k}-\frac{f\left(p_{k}\right)}{f^{\prime}\left(p_{k}\right)}
$$

We are interested here in analyzing the speed of convergence of Newton's method. To that end, define the error at the $k^{\text {th }}$ step to be $e_{k}=p-p_{k}$. We assume $f^{\prime \prime}$ is continuous near p and use a Taylor approximation about p_{k} $0=f(p)=f\left(p_{k}+e_{k}\right)=f\left(p_{k}\right)+e_{k} f^{\prime}\left(p_{k}\right)+e_{k}^{2} f^{\prime \prime}\left(p_{k}\right) / 2+O\left(e_{k}^{3}\right)$. If $f^{\prime}\left(p_{k}\right) \neq 0$, we may write

$$
-\frac{f\left(p_{k}\right)}{f^{\prime}\left(p_{k}\right)}=e_{k}+e_{k}^{2} \frac{f^{\prime \prime}\left(p_{k}\right)}{2 f^{\prime}\left(p_{k}\right)}+O\left(e_{k}^{3}\right)
$$

Then

$$
\begin{aligned}
e_{k+1} & =p-p_{k+1}=p-\left(p_{k}-\frac{f\left(p_{k}\right)}{f^{\prime}\left(p_{k}\right)}\right) \\
& =e_{k}-\left(e_{k}+\frac{f^{\prime \prime}\left(p_{k}\right)}{2 f^{\prime}\left(p_{k}\right)} e_{k}^{2}+O\left(e_{k}^{3}\right)\right) \\
& =-\frac{f^{\prime \prime}\left(p_{k}\right)}{2 f^{\prime}\left(p_{k}\right)} e_{k}^{2}+O\left(e_{k}^{3}\right)
\end{aligned}
$$

We want to find α such that $\left|e_{k+1}\right| \rightarrow C\left|e_{k}\right|^{\alpha}$, so we take the limit, giving $\alpha=2$ and $C=\left|f^{\prime \prime}(p) /\left(2 f^{\prime}(p)\right)\right|$. When $f^{\prime}(p) \neq 0$ we say that Newton's is (iteration) quadratic, since $\alpha=2$.

In order to compare Newton's method to other methods, we must note that two functions need to be evaluated at each iteration of Newton's method: f and f^{\prime}. We have no idea, in general, how much time it takes to evaluate f^{\prime} relative to f; it could be easier or harder, or about the same. Unless we know more about f, we might as well just say that Newton's method requires 2 function evaluations per iteration. So what is the order of convergence of Newton's method relative to function evaluations? We use $\left|p_{n+2}-p\right|=C\left|p_{n}-p\right|^{2}$ (why?) to find α and λ in $\left|p_{n+1}-p\right|=\lambda\left|p_{n}-p\right|^{\alpha}:$

$$
\left|p_{n+1}-p\right|^{\alpha}=\lambda^{\alpha}\left|p_{n}-p\right|^{\alpha^{2}}
$$

and thus

$$
\left|p_{n+2}-p\right|=\lambda\left|p_{n+1}-p\right|^{\alpha}=\lambda^{1+\alpha}\left|p_{n}-p\right|^{\alpha^{2}}
$$

This forces $\alpha^{2}=2$ and $\lambda^{1+\alpha}=C$, or $\lambda \approx\left|f^{\prime \prime}(p) /\left(2 f^{\prime}(p)\right)\right|^{0.414}$. Therefore, when comparing Newton's method to other methods which require only one function evaluation per iteration, we should consider Newton's method to have superlinear convergence of order $\alpha=\sqrt{2}$, not the quadratic convergence of order $\alpha=2$.

