Osculating Polynomials

As you have probably guessed, there is a more general idea growing here. Suppose that at a given node x_{j}, we know a function value y_{j} and maybe several derivative values $y_{j}^{\prime}, y_{j}^{\prime \prime}, \ldots, y_{j}^{\left(m_{j}\right)}$. We can use the Vandermonde matrix to show that there is a unique polynomial P of degree no more than d which satisfies

$$
P^{(k)}\left(x_{j}\right)=y_{j}^{(k)}, \quad k=0,1, \ldots, m_{j}, \quad j=0,1, \ldots, n
$$

where $d=n+m_{0}+m_{1}+\cdots+m_{n}$. This osculating (kissing) polynomial is a very general polynomial interpolator.

In fact, you should be able to name the type of polynomial approximation associated with each of the following types of data and give its degree:

1. $n>0, m_{j}=0, j=0,1, \ldots, n$.
2. $n>0, \quad m_{j}=1, j=0,1, \ldots, n$.
3. $n=0, \quad m_{0}=N$.

The Vandermonde block associated with node j now has $1+m_{j}$ rows, and looks like

$$
\left[\begin{array}{cccccc}
1 & x & x^{2} & x^{3} & \ldots & x^{d} \\
0 & 1 & 2 x & 3 x^{2} & \ldots & d x^{d-1} \\
0 & 0 & 2 & 6 x & \ldots & (d-1) d x^{d-2} \\
& & & & \vdots &
\end{array}\right]
$$

evaluated at $x=x_{j}$. As you have guessed, the full $(d+1) \times(d+1)$ Vandermonde matrix is nonsingular iff the x_{j} are distinct.

Of course, in some applications the y_{j} are values of a known function f. If f is smooth enough, and $[a, b]$ contains all of the nodes, then $\forall x \in[a, b], \exists \xi \in[a, b]$ such that

$$
f(x)=P(x)+\frac{f^{(d+1)}(\xi)}{(d+1)!} \prod_{j=0}^{n}\left(x-x_{j}\right)^{m_{j}+1} .
$$

The use of one polynomial to interpolate a large set of points (or a large number of conditions on a set of points) requires that the interpolator have a large degree. This often gives large and unwanted oscillations in the interpolator, and makes evaluating $P(x)$ more costly. If one has the freedom to choose the nodes, they can be selected to minimize the wild oscillations; this is called Chebyshev node selection. But even in this case there may not be a polynomial interpolator of reasonable degree satisfying your constraints.

