Least Squares with Gram-Schmidt

Recall the Modified Gram-Schmidt QR factorization:

$$
A=Q R, \quad \text { where }
$$

in exact arithmetic $Q \in \mathbb{R}^{m \times n}$ satisfies $Q^{t} Q=I$ and $R \in \mathbb{R}^{n \times n}$ is upper triangular with condition number $\kappa(R)=\kappa(A)$. The cost is $2 m n^{2}+\mathrm{O}(m n)$ flops. If A is overwritten by Q, then only $\frac{1}{2} n^{2}+\mathrm{O}(n)$ extra words of memory are required. If \tilde{Q} and \tilde{R} are the computed versions of Q and R, then there exists $\delta A \in \mathbb{R}^{m \times n}$ with $A+\delta A=\tilde{Q} \tilde{R}$, where $\|\delta A\|=\|A\| \mathrm{O}(\mu)$, and $\left\|\tilde{Q}^{t} \tilde{Q}-I\right\|=\kappa(A) \mathrm{O}(\mu)$.

Now to solve the least squares problem (LS) $\min _{x}\|A x-b\|_{2}$ we can use back substitution to solve $R x=Q^{t} b$ (to see this substitute $A=Q R$ into the normal equations: $\left.A^{t} A x=A^{t} b \Rightarrow R^{t} Q^{t} Q R x=R^{t} Q^{t} b \Rightarrow Q^{t} Q R x=Q^{t} b\right)$. Notice that when we write $R x=Q^{t} b$ we are assuming $Q^{t} Q=I$. This is true in exact arithmetic, but the result above says that in finite precision, the orthogonality of Q depends on $\kappa(A)$. Unfortunately, this - combined with the conditioning of R - gives a $[\kappa(A)]^{2}$ factor in the backward error for x. Here we will show how to avoid this to get a backward error result for MGS which is equivalent to that of the Householder $Q R$ applied to (LS).

Let the MGS QR factorization of $[A, b]$ be written as

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{ll}
Q & q
\end{array}\right]\left[\begin{array}{cc}
R & r \\
0 & \rho
\end{array}\right]
$$

where $q^{t} Q=0\left(q\right.$ is just $\left.q_{n+1}\right)$. Note that $A=Q R$ and $b=Q r+\rho q$. Then $Q^{t} b=Q^{t}(Q r+\rho q)=r$, and (LS) is solved by backward substitution: $R x=r$. Just for fun, show (both algebraically and geometrically) that $\rho=\min _{x}\|A x-b\|_{2}$.

If you already had the MGS factorization $A=Q R$ before b arrived, no worries. The partitioning above is just a nice way to package the algebra of one more MGS step:
$\mathrm{w}=\mathrm{b}$
for $i=1: n$,
$r(i)=Q(:, i)^{\prime} *_{W}$
$\mathrm{w}=\mathrm{w}-\mathrm{r}(\mathrm{i}) * \mathrm{Q}(:, \mathrm{i})$
end
rho $=\operatorname{norm}(\mathrm{w}) ; \quad \mathrm{q}=\mathrm{w} / \mathrm{rho}$;
Now do you really think that this removes the $\kappa(A)$ factor which came from the orthogonality errors in Q ? Why should it? I applaud you for your skepticism. The answer lies in the (substantial) differences in behavior between MGS and CGS. Explicitly computing $Q^{t} b$ as $r_{c}=Q^{t} * b$ is the CGS way, but MGS (the loop above) adapts to the errors made in each inner product, giving an r which has, (to the extent that it can), "accounted for" nonorthogonality in the columns of Q.

