
Rejected

Our first look at Monte-Carlo integration showed that when we could sample a
uniform r.v. from our domain Ω, then

volume(Ω)fave =

∫
Ω

f(X)dV

could be used to approximate
∫

Ω
f(X)dV as∫

Ω

f(X)dV = volume(Ω)f̄ + O(1/
√

N) = S + O(1/
√

N)

where f̄ = (
∑N

i=1 f(xi))/N is our computed sample mean.

Typically Ω ⊂ Rd and d is large. If, e.g., Ω is a rectangular region, say
Ω = [a1, b1]× [a2, b2]× . . .× [ad, bd], then volume(Ω) =

∏d
j=1(bj − aj), and sampling

from Ω is a matter of creating a vector x = (x1, x2, . . . , xn), where xi is a uniform
(pseudo-)random variable on [ai, bi]. Often it is a challenge to compute volume(Ω)
and/or to sample from a uniform distribution on Ω. One technique that addresses
both challenges is rejection sampling.

Consider a domain D ⊂ Rd for which (i) Ω ⊂ D, (ii) volume(D) is known, and (iii)
from which we can sample from a uniform distribution. If we sample x ∈ D, then
either x ∈ Ω or not. The ratio of the number of points in Ω to those in D
approaches the ratio volume(Ω)/volume(D). Furthermore, the sampling of those
x ∈ Ω is from a uniform distribution on Ω. Therefore, if we sample M times from D
and N of those are in Ω, then limN→∞N/M = volume(Ω)/volume(D) and in fact∫

Ω

f(X)dV =
[

N

M
volume(D)

] [∑N
i=1 f(x)

N

]
+ O(1/

√
N).

Here is the fundamental rejection sampling technique:

s = 0; j = 0; M = 0;

while j < N,

sample x from uniform distribution on D

if x is in Omega then

j = j + 1

s = s + f(x)

end

M = M + 1

end

S = s*volume(Omega)/M

The smaller D − Ω, the fewer samples are rejected. Often the biggest computation
in the loop is to decide if x ∈ Ω, and this question must be answered for each x ∈ D.


