Lagrange Interpolation on the Roots of Unity

Let n be a positive integer. Define $x_{k}=e^{2 \pi i k / n}, \quad k=0,1, \ldots, n-1$, where $i=\sqrt{-1}$. Notice that $x_{k}^{n}=1$, and as such these numbers are called the $n^{\text {th }}$ roots of unity. They are evenly spaced around the unit circle $|z|=1$ in \mathbb{C} : (De Moivre)

$$
x_{k}=e^{2 \pi i k / n}=(\cos (2 \pi / n)+i \sin (2 \pi / n))^{k}=\cos (2 \pi k / n)+i \sin (2 \pi k / n)
$$

Now suppose we wish to interpolate the data $\left(x_{k}, y_{k}\right), \quad k=0,1, \ldots, n-1$ with a polynomial $p(x)=\sum_{j=1}^{n-1} a_{j} x^{j}$ of degree $n-1$ (the Lagrange interpolator).

The Vandermonde view says that p can be determined by solving the system

$$
\begin{gathered}
V a=y, \quad \text { where } \\
a=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]^{t}, \quad y=\left[y_{0}, y_{1}, \ldots, y_{n-1}\right]^{t} \quad \text { and } \\
e_{k}^{t} V=\left[1, x_{k}, x_{k}^{2}, \ldots, x_{k}^{n-1}\right] .
\end{gathered}
$$

Now let's investigate the (Hermitian) matrix $\bar{V}^{t} V=V^{*} V=V^{\dagger} V=\left[s_{k j}\right]$. If $k \neq j$,

$$
s_{k j}=\sum_{r=0}^{n-1} \bar{x}_{k}^{r} x_{j}^{r}=\sum_{r=0}^{n-1} e^{2 \pi(j-k) r / n}=\sum_{r=0}^{n-1}\left(e^{2 \pi(j-k) / n}\right)^{r}=\frac{\left(e^{2 \pi(j-k) / n}\right)^{n}-1}{e^{2 \pi(j-k) / n}-1}=0,
$$

and for $k=j$,

$$
s_{j j}=\sum_{r=0}^{n-1} 1^{r}=n .
$$

so $V^{*} V=n I$. But then $V^{*} V a=V^{*} y$, so the coefficients of p are

$$
a=V^{-1} y=\left(\frac{1}{n}\right) V^{*} y
$$

What's the big deal? Well, by De Moivre, this is a discrete Fourier transform:

$$
p(x)=\sum_{r=0}^{n-1} a_{r}(\cos (2 \pi r / n)+i \sin (2 \pi r / n)) .
$$

and the a^{\prime} s are the DFT coefficients.
This DFT, as described here, is simply matrix multiplication by V^{*}, and requires $O\left(n^{2}\right)$ flops, but taking advantage of the special structure of V leads to

$$
a=\operatorname{FFT}(y),
$$

requiring only $O(n \log (n))$ flops. Polynomials and trigonometric functions famously meet here, and at the Chebyshev polynomials, in some of the most fundamental and elegant of classical mathematics.

