Linear Least Squares Computations

Assuming that $A \in \mathbb{R}^{m \times n}$ has linearly independent columns, the problem

$$
\begin{equation*}
\arg \min _{x}\|A x-b\|_{2} \tag{1}
\end{equation*}
$$

has a unique solution, say $x_{L S}$, which is also the unique solution to the normal equations

$$
\begin{equation*}
A^{t} A x=A^{t} b \tag{2}
\end{equation*}
$$

This suggests the normal equations approach to computing $x_{L S}$:

1. Form $C=A^{t} A$, and $w=A^{t} b$.
2. Compute the Cholesky factorization $C=L L^{t}$.
3. Solve $L y=w$ by forsub and then $L^{t} x=y$ by backsub.

This algorithm requires $m n^{2}+\frac{1}{3} n^{3}+O(m n)$ flops (taking advantage of the symmetry of $C)$. It is an important method because it is fast and doesn't use very much memory. $C x=w$ can be viewed as a compressed form of $\arg \min _{x}\|A x-b\|_{2}$.

We have other methods that, while more costly, are more robust in the face of rounding errors. The other methods arrive at $x_{L S}$ by a different route. Recall that the normal equations were a result of requiring that $b-A x$ be orthogonal (normal) to the subspace $S=\operatorname{ColSp}(A)$. That is another way of saying that $A x$ is the orthogonal projection of b onto S. The solution to the normal equations is therefore the solution to the more general linear system

$$
\begin{equation*}
A x=P b, \tag{3}
\end{equation*}
$$

where P is the orthogonal projector onto $S=\operatorname{ColSp}(A)$.
Now if Z is any matrix whose columns form a basis for S, then the orthogonal projector onto S is $P=Z\left(Z^{t} Z\right)^{-1} Z^{t}$, and (3) becomes

$$
\begin{equation*}
A x=Z\left(Z^{t} Z\right)^{-1} Z^{t} b \tag{4}
\end{equation*}
$$

This family of equations, parametrized by Z, explains most methods. For example, the normal equations gives $x=\left(A^{t} A\right)^{-1} A^{t} b$, and premultiplying by A gives $A x=A\left(A^{t} A\right)^{-1} A^{t} b$, which is (4), with $Z=A$.

The most often used LS methods compute a matrix $Z=Q$ whose columns form an orthonormal basis for S. Since Q and A have the same column space, each column of A is a linear combination of the columns of Q. That is $A=Q R$, where $R \in \mathbb{R}^{n \times n}$, and (3) becomes $Q R x=Q Q^{t} b$. Premultiplying by Q^{t} gives the (smaller and nonsingular) $n \times n$ system

$$
R x=Q^{t} b
$$

