$$
A=L D M^{t}
$$

If A is nonsingular and $A=L U$, then we can set $D=\operatorname{diag}(U)$ and (since D is nonsinglar) $M^{t} \equiv D^{-1} U$ is a unit upper triangular matrix and $A=L D M^{t}$.

There is no inherent benefit to this factorization over $L U$, but it can give us a perspective from which to develop other algorithms. The idea is not to compute $L D M^{t}$ from $L U$, but to derive a method to compute L, D and M directly. To that end, consider the $k^{t h}$ column of $A=L D M^{t}$:

$$
\begin{equation*}
a \equiv A e_{k}=L D M^{t} e_{k} \equiv L y \tag{1}
\end{equation*}
$$

Suppose we have already know the first $k-1$ columns of L and consider the blocked treatment of the unit lower triangular system $a=L y$:

$$
\left[\begin{array}{cc}
L_{11} & 0 \tag{2}\\
L_{21} & L_{22}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

where L_{11} is $k \times k$ and known, but the last column of L_{21} is something we would like to compute. Forward substitution gives y_{1} as the solution to $L_{11} y_{1}=a_{1}$. Now we know the first k elements of y, and (from (1))

$$
\begin{equation*}
y=D M^{t} e_{k} \tag{3}
\end{equation*}
$$

giving $e_{k}^{t} y=e_{k}^{t} D M^{t} e_{k}=d_{k k} e_{k}^{t} M^{t} e_{k}=d_{k k}$ (right?). $D^{-1} y=M^{t} e_{k}$ with M^{t} unit upper triangular means we can now compute the $k^{t h}$ column of M^{t} :
$e_{k}^{t} M=\left[y_{1}^{t} D_{1}^{-1}, 0\right]$, where $D_{1}=\operatorname{diag}\left(d_{11}, d_{22}, \ldots, d_{k k}\right)$.
Now let's try to find z, the $k^{t h}$ column of $L_{21}=\left[\tilde{L}_{21}, z\right]$. Notice from (3) that M^{t} upper triangular means $y_{2}=0$, so $L_{21} y_{1}+L_{22} y_{2}=a_{2}$ from (2) reduces to $L_{21} y_{1}=a_{2}$, or $\left(\right.$ with $\left.y_{1}=\left(\tilde{y}_{1}^{t}, d_{k k}\right)^{t}\right)$

$$
\tilde{L}_{21} \tilde{y}_{1}+z d_{k k}=a_{2},
$$

giving $z=\left(a_{2}-\tilde{L}_{21} \tilde{y}_{1}\right) / d_{k k}$.
Let's recap: Given the first $k-1$ columns of L and D, we can compute the $k^{t h}$ column of L, D and M^{t} as follows:

1. Solve $L_{11} y_{1}=a_{1}$ for y_{1} (forward substitution, about k^{2} flops).
2. Set $d_{k k}=e_{k}^{t} y_{1}$.
3. Compute $k^{\text {th }}$ row of $M: m_{k j}=e_{j}^{t} y_{1} / d_{j j}, j=1,2, \ldots, k-1$ ($k-1$ flops).
4. Compute $k^{\text {th }}$ column of $L: z=\left(a_{2}-\tilde{L}_{21} \tilde{y}_{1}\right) / d_{k k}$ (about $2 k(n-k)$ flops).

Like the $L U$ factorization, this takes about $2 n^{3} / 3$ flops. And like the $L U$
factorization, the method is not a stable general purpose method (trouble if $d_{k k}$ is \mid small \mid), but can be stabilized with little extra effort.

Unlike the LU factorization, this method can take advantage of symmetry. If $A=A^{t}$, then $M=L$ and the $A=L D L^{t}$ factorization can be computed in $n^{3} / 3$ flops, since step 4. can be skipped (it is done in step 3.).

