Inner Products give Geometry

The dot product is an example of an inner product. If x and y are two real 3 -vectors, then $x \cdot y=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}$. If we think of x and y as (column) vectors in \mathbb{R}^{n}, then $x \cdot y=x^{t} y=\sum_{i=1}^{n} x_{i} y_{i}$ as a matrix multiplication. If x and y are (column) vectors in \mathbb{C}^{n}, then $x^{t} y$ is not well-behaved. We might instead use $\bar{x}^{t} y$ or $x^{t} \bar{y}$. These are both perfectly reasonable, equally well-behaved generalizations of the dot product to \mathbb{C}^{n}. Before you choose one, I should warn you that there are infinitely many perfectly reasonable generalizations of the dot product. We call them inner products.

An inner product is a function that takes two vectors and gives a scalar and which satisfies some properties that makes it "well-behaved". Specifically, if V is a vector space over the field \mathbb{F}, then

$$
f: V \times V \rightarrow \mathbb{F}
$$

is an inner product on (V, \mathbb{F}) if for all $x, y, z \in V$ and all $\alpha \in \mathbb{F}$

1. $f(x, x)>0$ for all $x \neq 0$,
2. $f(x, y)=\overline{f(y, x)}$, and
3. $f(\alpha x+y, z)=\alpha f(x, z)+f(y, z)$.

When f is an inner product, we usually denote $f(x, y)$ by $\langle x, y\rangle$. In this notation, the dot product on \mathbb{R}^{n} is $x \cdot y=<x, y>=y^{t} x$, while the standard inner product on \mathbb{C}^{n} is $\langle x, y\rangle=\bar{y}^{t} x=y^{*} x$.

A vector space doesn't need an inner product, but if it has one, it is an inner product space, and it automatically gets some geometry: an inner product defines a length (the natural norm for the inner product space) as

$$
\|x\| \equiv \sqrt{<x, x>}
$$

and the angle, α, between vectors by

$$
<x, y>=\|x\|\|y\| \cos (\alpha)
$$

You might remember this formula as a theorem from Euclidean geometry; the difference is that here we are defining angles through this formula. Among some immediate consequences are the Cauchy-Schwartz inequality:

$$
<x, y><y, x>\leq<x, x><y, y>
$$

the parallelogram identity:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)
$$

and a geometric interpretation of nullspace, called orthogonality:

$$
x \perp y \quad \Leftrightarrow \quad<x, y>=0
$$

