Example: Sensitivity of Linear Systems

Consider the vectors

$$a_1 = \begin{pmatrix} 0.999 \\ 1 \end{pmatrix}$$
, and $a_2 = \begin{pmatrix} 1 \\ 1.001 \end{pmatrix}$.

Let's let the matrix A have columns a_1 and a_2 :

$$A = \begin{bmatrix} a_1, & a_2 \end{bmatrix} = \begin{bmatrix} 0.999 & 1\\ 1 & 1.001 \end{bmatrix}$$

You can check that A is nonsingular. Then a_1 and a_2 are linearly independent, and so any $b \in \mathbb{R}^2$ can be written in exactly one way as a linear combination $b = x_1a_1 + x_2a_2$. The coefficients x_1 and x_2 of this combination are the coordinates of the solution $x = (x_1, x_2)^t$, of the matrix equation Ax = b.

Now let's take b to be

$$b = \left(\begin{array}{c} 1.9989\\ 2.0010 \end{array}\right).$$

When we solve Ax = b, we find that (no rounding errors here)

$$x = \left(\begin{array}{c} 101.1\\ -99 \end{array}\right).$$

that is,

$$b = 101.1 \ a_1 - 99 \ a_2,$$

Now suppose we round b to the nearest thousandths place:

$$\tilde{b} = \left(\begin{array}{c} 1.999\\ 2.001 \end{array}\right).$$

This small change in b can be measured: $||b - \tilde{b}||_{\infty} = 0.0001$. Now how much of a_1 and a_2 do we need to make \tilde{b} ? Well, we solve $Ax = \tilde{b}$ to get

$$x = \left(\begin{array}{c} 1\\1 \end{array}\right),$$

that is,

$$b = 1 a_1 + 1 a_2.$$

A change in b of about 10^{-4} gives a change in x of over 10^2 .

This example was designed to make a point, you can see how it works by interpreting Ax = b as the intersection of 2 lines. Go ahead and plot the lines...