Example: Sensitivity of Linear Systems

Consider the vectors

$$
a_{1}=\binom{0.999}{1}, \text { and } a_{2}=\binom{1}{1.001}
$$

Let's let the matrix A have columns a_{1} and a_{2} :

$$
A=\left[\begin{array}{ll}
a_{1}, & a_{2}
\end{array}\right]=\left[\begin{array}{cc}
0.999 & 1 \\
1 & 1.001
\end{array}\right]
$$

You can check that A is nonsingular. Then a_{1} and a_{2} are linearly independent, and so any $b \in \mathbb{R}^{2}$ can be written in exactly one way as a linear combination $b=x_{1} a_{1}+x_{2} a_{2}$. The coefficients x_{1} and x_{2} of this combination are the coordinates of the solution $x=\left(x_{1}, x_{2}\right)^{t}$, of the matrix equation $A x=b$.

Now let's take b to be

$$
b=\binom{1.9989}{2.0010}
$$

When we solve $A x=b$, we find that (no rounding errors here)

$$
x=\binom{101.1}{-99} .
$$

that is,

$$
b=101.1 a_{1}-99 a_{2}
$$

Now suppose we round b to the nearest thousandths place:

$$
\tilde{b}=\binom{1.999}{2.001}
$$

This small change in b can be measured: $\|b-\tilde{b}\|_{\infty}=0.0001$. Now how much of a_{1} and a_{2} do we need to make \tilde{b} ? Well, we solve $A x=\tilde{b}$ to get

$$
x=\binom{1}{1}
$$

that is,

$$
\tilde{b}=1 a_{1}+1 a_{2} .
$$

A change in b of about 10^{-4} gives a change in x of over 10^{2}.
This example was designed to make a point, you can see how it works by interpreting $A x=b$ as the intersection of 2 lines. Go ahead and plot the lines...

