Example: High Order to First Order

An order m initial value problem is given in standard form as
$y^{(m)}(t)=f\left(t, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(m-1)}\right), \quad t \in[a, b], y^{(k)}(a)=\alpha_{k}, k=0,1, \ldots, m-1 \quad(\mathrm{IVPm})$
By introducing the variables $u_{1}(t)=y(t), u_{2}(t)=y^{\prime}(t), \ldots, u_{m}(t)=y^{(m-1)}(t)$, we have the first order system

$$
\mathbf{u}^{\prime}(t)=F(t, \mathbf{u}), \quad t \in[a, b], \quad \mathbf{u}(a)=\alpha, \quad(I V P)
$$

where

$$
F(t, \mathbf{u})=\left(\begin{array}{c}
u_{2}(t) \\
u_{3}(t) \\
\vdots \\
u_{m}(t) \\
f(t, \mathbf{u})
\end{array}\right) \cdot \quad(E F)
$$

Here we give an example of this transformation. Suppose (IVPm) has the form

$$
\begin{gathered}
y^{\prime \prime \prime}(t)=2 \sin (y(t)) y^{\prime \prime}(t)+\left(y^{\prime}(t)\right)^{2}-1 / y(t)+t^{2}, \quad \text { with } \\
t \in[1,3], \quad y(1)=1, \quad y^{\prime}(1)=-1, \quad y^{\prime \prime}(1)=2 .
\end{gathered}
$$

Then $a=1$ and $b=3$. We define $u_{1}(t)=y(t), u_{2}(t)=y^{\prime}(t)$, and $u_{3}(t)=y^{\prime \prime}(t)$. The vector form of \mathbf{u} is

$$
\mathbf{u}(t)=\left(\begin{array}{l}
u_{1}(t) \\
u_{2}(t) \\
u_{3}(t)
\end{array}\right), \quad \text { with } \quad \mathbf{u}(1)=\alpha=\left(\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right)
$$

The (IVP) vector field is given by

$$
\mathbf{u}^{\prime}(t)=F(t, \mathbf{u})=\left(\begin{array}{c}
u_{1}^{\prime}(t) \\
u_{2}^{\prime}(t) \\
u_{3}^{\prime}(t)
\end{array}\right)=\left(\begin{array}{c}
u_{2}(t) \\
u_{3}(t) \\
2 \sin \left(u_{1}(t)\right) u_{3}(t)+u_{2}^{2}(t)-1 / u_{t}(t)+t^{2}
\end{array}\right) .
$$

Make sure you understand how this is the same as (IVP) and (EF).
Euler's method (not a recommendation) for this system might look like

```
W(:,1) = \alpha, t = a, h = (b-a)/N,
for j=1:N,
    W(:,j+1) = W(:,j) + h*F(t,W(:,j)) % feval('F',t,W(:,j)) or equiv.
    t = t + h
end
```

