
Stiff Differential Equations

Linear differential equations are tremendously important as models of many
physical phenomena, and all (well posed) problems behave like linear equations
locally. We should therefore expect that our numerical methods behave well when
applied to linear problems.

Consider first the initial value problem

y′(t) = λy(t), y(0) = α, t ≥ 0. (test)

It’s separable, and we can find the solution y(t) = αeλt. The case λ ≥ 0 will be
deferred (it’s scarier). With λ < 0, y(t)→ 0 as t→∞ (and pretty quickly, too). If
our method is to approximate even this simple test problem, we need wk+1 → 0 as
k →∞. Let’s see where this leads...

Recall that the single step methods wk+1 = wk + hφ(tk, wk), applied to (test) have
the ideal slope φI(t, y) = (y(t+ h)− y(t))/h = y(t)(eλh − 1)/h. If we write
y(t+ h) = Cy(t), then C = eλh, and we see that, when applied to (test),
wk + hφ(tk, wk) should approximate eλhwk. How well it does this is says volumes
about the method, but at the coarsest level, wk+1 = Cwk → 0 as k →∞, requires
|C| < 1.

To see the implications, let’s go back to Euler’s method. Here φ(t, y) = f(t, y) = λy,
and writing wk+1 = Cwk we have C = 1 + hλ. Now |C| < 1 means h < 2/|λ|, and
we have another constraint on h. You should convince yourself that the Taylor
method of order n has C =

∑n
j=0(λh)j/j!. In fact the RK methods of order up to 4

are exactly Taylor methods when applied to (test). For n = 4, h must satisfy
h < 2.7853/|λ|.

This may not seem like a terribly interesting constraint on h, for example, it does
not typically force h to be so small that rounding errors swamp discretization errors.
It does, though, impose an upper bound that can trick an adaptive method, even for
moderate λ. To see this we usually talk about stiffness in the context of a system of
IVP’s. The test equation here is y′ = Ay. Assuming all eigenvalues of A have
negative real parts (i.e. <(λi) < 0), we measure stiffness as max <(λi)

<(λj)
. If this were a

coupled spring-mass system, this would be the ratio of the spring constants of the
most and least stiff springs.

If this ratio is large, then the motion is an extreme mixture of high and low
frequencies. The method must take care not to exceed the h-constraint for the
highest frequency (most negative λ). Usually such systems are damped, and then
the high frequency component of the solution is a transient event that once decayed
leaves a smoother solution. This is all expected. So what? Here’s the crux of the
biscuit: to take advantage of the smoother solution we would like to take bigger
time steps after the higher frequencies decay, but if h is choosen larger than the
constraint for the highest frequency, it will get excited by errors and reappear!


