## Runge Kutta Methods of Order Two

$$
\begin{equation*}
y^{\prime}(t)=f(t, y), \quad t \in[a, b], \quad y(a)=\alpha \tag{IVP}
\end{equation*}
$$

So the Runge-Kutta methods are single step methods that give us smaller errors than Euler, and more generality than the Taylor methods. We know that they sample $f$ (the slope field) in the interval $[t, t+h]$ in order to approximate the average (and ideal) slope $(y(t+h)-y(t)) / h$. How this is done is too much to cover in all of its (beautiful) generality, but we will explore the $2^{\text {nd }}$ order methods here.

Recall that the $2^{\text {nd }}$ order Taylor method is derived by dropping the $\mathrm{O}\left(h^{3}\right)$ term from

$$
\begin{aligned}
y(t+h) & =y(t)+h y^{\prime}(t)+\frac{h^{2}}{2} y^{\prime \prime}(t)+\mathrm{O}\left(h^{3}\right) \\
& =y(t)+h f(t, y)+\frac{h^{2}}{2}\left[f_{t}(t, y)+f(t, y) f_{y}(t, y)\right]+\mathrm{O}\left(h^{3}\right)
\end{aligned}
$$

The iteration looks like

$$
w_{j+1}=w_{j}+h f\left(t_{j}, w_{j}\right)+\frac{h^{2}}{2}\left[f_{t}\left(t_{j}, w_{j}\right)+f\left(t_{j}, w_{j}\right) f_{y}\left(t_{j}, w_{j}\right)\right] .
$$

It is the $f_{t}$ and $f_{y}$ terms that restrict the general use of this method, so we will try to replace these. To that end we introduce the first order Taylor polynomial in two variables

$$
f(t+h, y+k)=f(t, y)+h f_{t}(t, y)+k f_{y}(t, y)+\mathrm{O}\left(h^{2}+h k+k^{2}\right)
$$

Our method will have the form

$$
w_{j+1}=w_{j}+h\left[\lambda f\left(t_{j}, w_{j}\right)+(1-\lambda) f\left(t_{j}+\alpha h, w_{j}+\alpha h f\left(t_{j}, w_{j}\right)\right],\right.
$$

with $\alpha \in(0,1]$. Matching $f\left(t_{j}+\alpha h, w_{j}+\alpha h f\left(t_{j}, w_{j}\right)\right.$ to $f(t+h, y+k)$ gives $k=\alpha h f\left(t_{j}, w_{j}\right)$, and replacing $f\left(t_{j}+h, w_{j}+k\right)$ with the Taylor form gives

$$
\begin{aligned}
w_{j+1} & =w_{j}+h\left[\lambda f\left(t_{j}, w_{j}\right)+(1-\lambda)\left(f\left(t_{j}, w_{j}\right)+h f_{t}\left(t_{j}, w_{j}\right)+\alpha h f\left(t_{j}, w_{j}\right) f_{y}\left(t_{j}, w_{j}\right)\right)\right] \\
& \left.=w_{j}+h f\left(t_{j}, w_{j}\right)+h(1-\lambda)\left[\alpha h f_{t}\left(t_{j}, w_{j}\right)+\alpha h f\left(t_{j}, w_{j}\right) f_{y}\left(t_{j}, w_{j}\right)\right)\right] .
\end{aligned}
$$

Comparing this to the Taylor iteration, we see that we must have

$$
(1-\lambda) \alpha=\frac{1}{2}
$$

Here, then, is the general form for all second order Runge-Kutta methods:

$$
w_{j+1}=w_{j}+\frac{h}{2 \alpha}\left[(2 \alpha-1) f\left(t_{j}, w_{j}\right)+f\left(t_{j}+\alpha h, w_{j}+\alpha h f\left(t_{j}, w_{j}\right)\right)\right]
$$

Most authors include the formulas for $\alpha=\frac{1}{2}$ (the midpoint method), and $\alpha=1$ (modified Euler), but in fact there are a continuum of methods for $\alpha \in\left[\frac{1}{2}, 1\right]$. If $\alpha \notin\left[\frac{1}{2}, 1\right]$, then $\lambda \notin[0,1] . \alpha<\frac{1}{2}$ may be ok, but if $\alpha$ is too small, we do not even have an order $h^{2}$ method (since $k=\alpha h f\left(t_{j}, w_{j}\right)$ ), while if $\alpha>1$, we are reaching outside of $[t, t+h]$ to average something in $[t, t+h]$.

