Multistep Methods

$$
\begin{equation*}
y^{\prime}(t)=f(t, y), \quad t \in[a, b], \quad y(a)=\alpha \tag{IVP}
\end{equation*}
$$

Single step methods have no memory. Each step is taken as if it were the first step of (IVP) the with initial condition $y\left(t_{k}\right)=w_{k}$. Can we make use of the information given by $w_{0}, w_{1}, \ldots, w_{k}$ while trying to compute w_{k+1} ? We can get m-step "memory" by using the last m of the w_{i} 's. That is, we pretend we know $y\left(t_{i}\right)$ not only at the current time t_{k} but also at $m-1$ previous time steps. Thus a 2 -step method uses $\left(t_{k-1}, w_{k-1}\right)$ and $\left(t_{k}, w_{k}\right)$ (instead of only $\left.\left(t_{k}, w_{k}\right)\right)$ to determine w_{k+1}. The FTC says

$$
y(t+h)-y(t)=\int_{t}^{t+h} y^{\prime}(s) d s, \quad \text { or } \quad y(t+h)=y(t)+\int_{t}^{t+h} f(s, y(s)) d s
$$

but does not appear to help, for we do not know y^{\prime} or y in the interval $\left[t_{k}, t_{k+1}\right]$. Multistep methods employ a polynomial interpolator, say P, to approximate f :

$$
w_{k+1}=w_{k}+\int_{t_{k}}^{t_{k+1}} P(s) d s
$$

The Adams class of methods use a Lagrange interpolator and a uniform time step h, and they have l.t.e. equal to 1 plus the degree of P. Specifically, the
Adams-Bashforth (explicit) methods (AB) fit the data $\left(t_{k-i}, f\left(t_{k-i}, w_{k-i}\right)\right)$,
$i=m-1, \ldots, 1,0$. With h and m fixed, we can integrate P analytically to arrive at values for c_{0}, \ldots, c_{m-1} in

$$
w_{k+1}=w_{k}+h \sum_{i=0}^{m-1} c_{i} f\left(t_{k-i}, w_{k-i}\right)
$$

For example, the AB two-step (l.t.e. $\mathrm{O}\left(h^{2}\right)$) and AB three-step (l.t.e. $\mathrm{O}\left(h^{3}\right)$) are

$$
\begin{gathered}
w_{k+1}=w_{k}+h\left[\frac{3}{2} f\left(t_{k}, w_{k}\right)-\frac{1}{2} f\left(t_{k-1}, w_{k-1}\right)\right] \text {, and } \\
w_{k+1}=w_{k}+h\left[\frac{23}{12} f\left(t_{k}, w_{k}\right)-\frac{16}{12} f\left(t_{k-1}, w_{k-1}\right)+\frac{5}{12} f\left(t_{k-2}, w_{k-2}\right)\right] .
\end{gathered}
$$

The Adams-Moulton (implicit) methods (AM) fit the data $\left(t_{k-i}, f\left(t_{k-i}, w_{k-i}\right)\right)$, $i=m-1, \ldots, 1,0$, and $\left(t_{k+1}, f\left(t_{k+1}, w_{k+1}\right)\right)$ to arrive at values for $c_{-1}, c_{0}, \ldots, c_{m-1}$ in

$$
w_{k+1}=w_{k}+h\left[c_{-1} f\left(t_{k+1}, w_{k+1}\right)+\sum_{i=0}^{m-1} c_{i} f\left(t_{k-i}, w_{k-i}\right)\right] .
$$

For example, the AM two-step (l.t.e. $\mathrm{O}\left(h^{3}\right)$) and AM three-step (l.t.e. $\mathrm{O}\left(h^{4}\right)$) are

$$
\begin{gathered}
w_{k+1}=w_{k}+h\left[\frac{5}{12} f\left(t_{k+1}, w_{k+1}\right)+\frac{8}{12} f\left(t_{k}, w_{k}\right)-\frac{1}{12} f\left(t_{k-1}, w_{k-1}\right)\right], \text { and } \\
w_{k+1}=w_{k}+h\left[\frac{9}{24} f\left(t_{k+1}, w_{k+1}\right)+\frac{19}{24} f\left(t_{k}, w_{k}\right)-\frac{5}{24} f\left(t_{k-1}, w_{k-1}\right)+\frac{1}{24} f\left(t_{k-2}, w_{k-2}\right)\right] .
\end{gathered}
$$

How many new function evaluations are required for multistep iterations?

