
Householder Reflectors

The Householder reflector is arguably the most important tool in (dense) numerical
linear algebra. Let u ∈ Rn×1. Then the Householder reflector defined by u is given by

H = H(u) = I − βuut, where β = 2/(utu).

Algebraically: H = H−1 is a symmetric (Hermitian) rank-1 perturbation of I.
Analytically: H is an orthogonal (unitary) matrix. Geometrically: Hv is the
reflection of v about the hyperplane orthogonal to u (as a function: u → H(u) has
domain RP n−1, and as an operator: H : v → Hv is an orthogonal reflector on Rn).

Typically, H is used in matrix factorizations to introduce zeros into some other
matrix. To see how it works, suppose we would like an arbitrary vector x to be sent
to a multiple of some vector y under the action of H, i.e. find u such that Hx = αy.
Since H is orthogonal, ‖x‖2 = ‖Hx‖2 = |α|‖y‖2, giving |α| = ‖x‖2/‖y‖2. If
(I − βuut)x = αy, then ηu = x− αy, where η = β(utx) ∈ R. Since H(u) = H(γu),
we may take u to be any (nonzero) multiple of x± αy.

Introducing zeros into a matrix is usually cast as introducing zeros below a given
element, so we will take y above to be e1 (zeros below the first element). In that
case u will be a multiple of x± αe1. Now put on your error analysis hat and show
that we should take u to be a multiple of x + sign(x1)‖x‖2 e1 (hint: what happens if
x ≈ e1?). Such a u is called a Householder vector for x.

Notice that except for the first entry, u is x. The only computational task,
therefore, is to find ‖x‖2, and the only challenge there is to avoid underflow or
overflow (which should be incorporated into any 2–norm code anyway (scale)).

So for any x we can easily compute a Householder vector u such that
Hx = ±‖x‖2e1. In order to zero entries k+1:n of a vector y, we simply compute a
Householder vector ũ for y(k :n). Then embedding ũ in u: ut = (0, ũt) gives an
embedding of H̃ ≡ I − βũũt in H = I − βuut:

u =

(
0
ũ

)
=⇒ H =

[
I 0

0 H̃

]
.

A discussion of Householder reflectors wouldn’t be complete without looking at how
we compute HB for some matrix B ∈ Rn×p. H is n× n, but is completely defined
by u ∈ Rn, and as such we should expect that we can take advantage of the
structure. Firstly, we don’t explicitly form H. It would be wasteful of both memory
and computation. Instead, we just remember (store) u. We don’t need H:

HB = (I − βuut)B = B − (βu)(utB).

Some think that we should save memory by scaling u so that u(1) = 1 (and since it
is known implicitly, it doesn’t need to be stored), others suggest scaling u so that
β = 1 (‖u‖2 =

√
2, and thus (βu) doesn’t require any computation), and I prefer a

base-2 scaling that avoids a bit of rounding error and can be fast. These ideas are
all fine, but rather inconsequential if n is very large.


