Householder $Q R$

Algorithmically, this method is very close to G.E. with no pivoting. There, a Gauss transform $M_{k}=I+m_{k} e_{k}^{t}$ was used to introduce zeros below the (k, k) element of $A^{(k-1)}$, giving $A_{G}^{(k)}=M_{k} A_{G}^{(k-1)}$. Here, a Householder reflector $H_{k}=I-\beta u_{k} u_{k}^{t}$ replaces the Gauss transform as the operator that introduces zeros below the (k, k) element: $A_{H}^{(k)}=H_{k} A_{H}^{(k-1)}$.

Let $A \in \mathbb{R}^{m \times n}$, with $m \geq n$, and let $p=\min (n, m-1)$. The Householder $Q R$ factorization of A can be coarsely described as

$$
A^{(0)}=A
$$

For $\mathrm{k}=1: \mathrm{p}$
Compute u so that $\left(I-\beta u u^{t}\right) A^{(k-1)}$ has zeros below its (k, k) entry Compute $A^{(k)}=H_{k} A^{(k-1)}$

End

There are some important details to consider yet, but it is essentially this simple.
We know that if u is a Householder vector for x, then it is a multiple of $x \pm\|x\|_{2} e_{1}$, and that $H x=\left(I-\beta u u^{t}\right) x= \pm\|x\|_{2} e_{1}$, with $\beta=2 /\left(u^{t} u\right)$. As with G.E. we can view the $k^{\text {th }}$ step as

$$
A^{(k)}=\left[\begin{array}{cc}
R^{(k)} & X^{(k)} \\
0 & \tilde{A}^{(k)}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & \tilde{H}_{k}
\end{array}\right]\left[\begin{array}{cc}
R^{(k-1)} & X^{(k-1)} \\
0 & \tilde{A}^{(k-1)}
\end{array}\right]=H_{k} A^{(k-1)},
$$

where $R^{(k)}$ is $k \times k$ upper triangular, and $\tilde{A}^{(k)}$ is $(m-k) \times(n-k)$. Here $u_{k}^{t}=\left(0^{t}, \tilde{u}_{k}^{t}\right)$, where \tilde{u}_{k} is a Householder vector associated with $x=\tilde{A}^{(k-1)} e_{1}$.

We never form the Householder reflectors. We simply save the \tilde{u}_{k} vectors. When we want to compute $C=\left(I-\beta u u^{t}\right) B$ for some matrix B (as in the loop above), we simply note that

$$
C=B-\left((\beta u)\left(u^{t} B\right)\right) .
$$

The parenthesis are purposefully placed to suggest the implementation. If H is $n \times n$ and B is $n \times p$, then the cost of this this implementation is about $4 n p$ flops. In the loop above, we use \tilde{u}_{k} in place of u, and $\tilde{A}^{(k-1)}$ in place of B.

When the loop terminates, we have $H_{p} \cdots H_{2} H_{1} A=R$, and defining $Q^{t}=H_{p} \cdots H_{2} H_{1}$ gives $A=Q R$. We do not explicitly have the matrix Q, but by saving the \tilde{u}_{k} 's, we have the "factored form" of Q : all the information needed to construct it, or to compute its action.

The cost of this factorization is about
$\sum_{k=0}^{p-1} 4(m-k)(n-k)=2 m n^{2}-2 n^{3} / 3+O(m n)$ flops. If we overwrite the upper triangle of the array A by R, the lower triangular part can be used to store all but one element of each of the $\tilde{u_{k}}$. Typically an extra n-vector is used to store the first element of each \tilde{u}_{k}.

