
Hessenberg Similarity

One of the most important condensed forms in numerical linear algebra is the
Hessenberg matrix. An upper Hessenberg matrix is almost upper triangular, having
zeros below the first subdiagonal.

Every square matrix is orthogonally similar to a Hessenberg matrix. There are
methods for reducing A ∈ Rn×n to H = V tAV based on Gram-Schmidt (the Arnoldi
method) and on Householder reflectors (a slight modification to the Householder QR
method). These methods are about twice as expensive as their QR analogs (the
Householder Hessenberg reduction requires about 10

3
n3 flops), but the resulting

matrix is similar to A.

There are several reasons Hessenberg matrices are important, but I would suggest
that the following is the most fundamental: Suppose that you wanted to solve
(A− sI)x = b for m different values of s. Gaussian elimination (or QR) would
require a new factorization for each s, resulting in a cost of O(mn3) flops. But

(A− sI)x = b ⇒ V t(A− sI)V V tx = V tb ⇒ (H − sI)y = z,

which can be solved for y in O(n2) flops, and x can be recovered as x = V y in
another O(n2) flops. This gives a total cost of O(n3 + mn2) flops (which is more
efficient than G.E. on A− sI for all values of m bigger than about 6)!

Since H is similar to A, they have the same eigenvalues. If you now consider the
shifted inverse power method, you see that even shifting several times for each
eigenvalue, we could find all eigenvalues in O(n3) flops (rather than the O(n4)
complexity of G.E. in this context).

As another application, consider evaluating p(A) for some polynomial p. There are
many ways to approach this problem (and Horner’s method isn’t optimal for
matrices), but p(A) = p(V HV t) = V p(H)V t suggests reduction to Hessenberg form
and then evaluating p(H). If Horner’s method is used, the Hessenberg approach is
faster than Horner on A if the degree of p is bigger than about 6.

In fact, there is another Hessenberg-based method for finding p(A): Compute the
QR factorization of H − s1I: Q1R1 = H − s1I. Now define H1 = R1Q1 + s1I.
Repeat this:

QkRk = Hk − skI and then Hk+1 = RkQk + skI.

If this process is repeated for k = 1, 2, . . . ,m, then

(Q1Q2 · · ·Qm)(Rm · · ·R2R1) = (H − s1I)(H − s2I) · · · (H − smI)

giving the QR factorization QR = p(H), where p(x) =
∏m

i=1(x− si).

Under mild hypotheses on H, the iteration above with si = 0, converges to a (block
2× 2) upper triangular matrix T : Hk −→ T as k →∞. The Hk are all similar to
H, and thus the real eigenvalues of H are the real diagonal elements of T . This is
the idea behind the QR algorithm.


