Gaussian Quadrature

Recall the general quadrature rule

$$
\int_{a}^{b} f(x) d x=\sum_{i=0}^{n} c_{i} f\left(x_{i}\right)+R
$$

where the nodes $x_{0}<x_{1}<\cdots<x_{n} \in[a, b]$ are arbitrary, $c_{i}=\int_{a}^{b} L_{n i}(x) d x, L_{n i}(x)$ is the $i^{\text {th }}$ Lagrange basis function for the nodes, and R is the truncation error (see the page Quadrature).

Notice that if f is a polynomial of degree n or less, then R is 0 , and the rule is exact. We say that the order of a quadrature rule is the highest degree polynomial for which the rule is exact. Thus the rule above has order at least n.

The Newton-Cotes rules use equally space nodes, but if we have freedom to choose our nodes we can do much better:

Let $x_{0}<x_{1}<\cdots<x_{n} \in[a, b]$ and let us find a polynomial $p_{n}(x)=c \prod_{i=0}^{n-1}\left(x-x_{i}\right)$ for which

$$
\begin{equation*}
\int_{a}^{b} x^{k} p_{n}(x) d x=0, \quad k=0,1, \ldots, n-1 \tag{O}
\end{equation*}
$$

Whether we can do this is a good question, but if we can, then behold: If h is any polynomial of degree $2 n-1$ or less, then we can write $h=q p_{n}+r$, where q and r are polynomials of degree at most $n-1$, and

$$
\int_{a}^{b} h(x) d x=\int_{a}^{b} q(x) p_{n}(x) d x+\int_{a}^{b} r(x) d x
$$

But $\int_{a}^{b} q(x) p_{n}(x) d x=0$ by conditions (O), and $h\left(x_{i}\right)=r\left(x_{i}\right)$ because $p_{n}\left(x_{i}\right)=0$. So

$$
\int_{a}^{b} h(x) d x=\int_{a}^{b} r(x) d x=\sum_{i=0}^{n} c_{i} r\left(x_{i}\right)=\sum_{i=0}^{n} c_{i} h\left(x_{i}\right) .
$$

These conditions on $p_{n}(x)$ give a Gaussian Quadrature (GQ) rule, which is of order at least $2 n-1$, nearly doubling the order of the Newton-Cotes rules!. Remarkable? You decide. Beautiful? Oh, man! Attainable? Glad you asked:

Notice that (O) are the orthogonolity conditions $\left\langle x^{k}, p_{n}(x)\right\rangle_{[a, b]}=0$, and thus we want n nodes, pairwise distinct in $[a, b]$, to give a p_{n} which is orthogonal (on $[a, b]$ wrt the weight $w(x) \equiv 1$) to all polynomials of degree less than n.

For Legendre GQ, we map $[a, b]$ to $[-1,1](u=2(x-a) /(b-a)-1)$, and make use of the set of polynomials orthogonal on $[-1,1]$ wrt weight $w(x) \equiv 1$. That is, $p_{n}(x)$ is (some normalization of) the $n^{\text {th }}$ Legendre polynomial (which satisfies (O)). It has the roots we want: Let $g(x)=\prod_{i=1}^{m}\left(x-x_{i}\right)$ be the monic polynomial of degree m with roots consisting of the roots of p_{n} of odd multiplicity in $(-1,1)$, then $\left|\int_{-1}^{1} g(x) p_{n}(x) d x\right|>0$. If $m<n$, this integral is 0 , so $m \geq n$, and thus p_{n} must have n distinct roots in $(-1,1)$. There are other intervals and weight functions which allow GQ for singular functions and infinitely wide intervals, but Legendre GQ is far and away the most used.

