The Gram-Schmidt process (GSp) takes a sequence a_1, a_2, \ldots, a_n of linearly independent vectors and gives a sequence q_1, q_2, \ldots, q_n of orthonormal vectors which satisfy

$$\text{Span}(q_1, q_2, \dots, q_k) = \text{Span}(a_1, a_2, \dots, a_k), \quad k = 1, 2, \dots, n.$$
 (1)

Everything about the GSp is here in (1). You can even see how it works: Suppose you have $q_1, q_2, \ldots, q_{k-1}$, and you want q_k . Since we want $a_k \in \text{Span}(q_1, q_2, \ldots, q_k)$, we write

$$a_k = r_{kk}q_k + \sum_{j=1}^{k-1} r_{jk}q_j.$$
 (2)

Premultiplying by q_i^t (and noting orthogonality) gives

$$r_{jk} = q_j^t a_k, \quad j = 1, 2, \dots, k-1,$$
(3)

and now that the r_{ij} are known we can use (2) to define

$$w \equiv r_{kk}q_k = a_k - \sum_{j=1}^{k-1} r_{jk}q_j.$$
 (4)

This gives the direction of q_k , and r_{kk} is chosen (usually positive) so that q_k has unit length:

$$r_{kk} = \|w\|_2,$$
 (5)

and

$$q_k = w/r_{kk}.\tag{6}$$

The GSp is simply (3), (4), (5), and (6) for k = 1, 2, ..., n.

The geometry of the k^{th} step of GSp is simple:

For each j = 1, 2, ..., k - 1, (3) and (4) subtracts from a_k its projection onto q_j . The resulting vector is then orthogonal to q_j . The final vector, w, is then orthogonal to $q_1, q_2, ..., q_{k-1}$. Interpret r_{jk} as the (signed) length of the projection of a_k onto q_j .

Steps (5) and (6) simply normalize the new q_k .

Notice that the only time that something can go wrong here is if w = 0; that is, if after subtracting the projections of a_k onto the previous q_j , we end up with nothing. But that means that a_k is a linear combination of the previous q_j , and thus that the a_k are linearly dependent.

If we have coordinates, let $A = [a_1, a_2, \ldots, a_n]$, let $Q = [q_1, q_2, \ldots, q_n]$ and let R be the $n \times n$ upper triangular matrix defined by (3) and (5). Then the $m \times n$ matrix Q has orthonormal columns, and A = QR. This is called a (thin) QR factorization of A. The columns of Q form an orthonormal basis for ColSp(A).

Notice also that (if the columns of A are linearly independent) the only freedom we have above is the sign of r_{kk} (or its phase if it were complex). Thus, except for the sign of the r_{kk} and (therefore) the sense of the q_k , the QR factorization is unique. We say that if Ahas full column rank, the QR factorization is essentially unique. While there are other ways to compute it, the GSp essentially defines the (thin) QR factorization.