The first (and only?) step of Gaussian elimination

Let $A^{(1)}=M_{1} A$ be the matrix obtained by using the first row of A to eliminate (send to zero) the entries below a_{11}. Recall that M_{1} is of the form $M_{1}=I+m_{1} e_{1}^{t}$, and that we want

$$
M_{1} A e_{1}=a_{11} e_{1}
$$

Then $a_{11} e_{1}=\left(I+m_{1} e_{1}^{t}\right) A e_{1}=A e_{1}+m_{1} e_{1}^{t} A e_{1}=A e_{1}+a_{11} m_{1}$, and if $a_{11} \neq 0$, we can solve this for m_{1} :

$$
m_{1}=\left(\frac{1}{a_{11}}\right)\left(a_{11} e_{1}-A e_{1}\right)
$$

This is simply a vector notation for $m_{11}=0$ and $m_{i, 1}=-a_{i, 1} / a_{11}, \quad i=2,3, \ldots, n$.
Once we know m_{1}, we can complete step 1 of GE, by computing $A^{(1)}=M_{1} A$:

$$
A^{(1)}=A+m_{1}\left(e_{1}^{t} A\right) .
$$

We do not explicitly form M_{1} (why?), we do respect those parentheses (why?), and we do not explictly multiply e_{1}^{t} and A (why?). If one pays attention to these admonitions, then m_{1} and $A^{(1)}$ can be computed in 1 division, $n-1$ multiplications, $(n-1)^{2}$ multiplications, and $(n-1)^{2}$ additions, for a total of $2 n^{2}+\mathrm{O}(n)$ flops.

We are finished with step 1 of GE, and partition $A^{(1)}$ as

$$
A^{(1)}=\left[\begin{array}{cc}
a_{11} & \tilde{a}_{1}^{t} \\
0 & \tilde{A}^{(1)}
\end{array}\right] .
$$

Please stop reading for a bit and think about step $2 \ldots$ Isn't step 2 going to be just like step 1, but with the names changed? Won't we use the first row of $\tilde{A}^{(1)}$ to eliminate the entries below $\tilde{a}_{11}^{(1)}$? Then you know how it goes. In fact, you know how it goes for step $k+1$: Suppose we've completed k steps $\left(\tilde{A}^{(k)}\right.$ is $\left.(n-k) \times(n-k)\right)$:

$$
A^{(k)}=\left[\begin{array}{cc}
U^{(k)} & X^{(k)} \\
0 & \tilde{A}^{(k)}
\end{array}\right] .
$$

You know the formulas,

$$
\tilde{m}_{k+1}=\left(\frac{1}{\bar{a}_{11}}\right)\left(\tilde{a}_{11} e_{1}-\tilde{A}^{(k)} e_{1}\right) \quad \text { and } \quad \hat{A}^{(k+1)}=\tilde{A}^{(k)}+\tilde{m}_{k+1}\left(e_{1}^{t} \tilde{A}^{(k)}\right)
$$

We get the $\tilde{A}^{(k+1)}$ simply by partioning $\hat{A}^{(k+1)}$ as we partitioned $A^{(1)}$ above.
Computing $\tilde{A}^{(k+1)}$ requires $2(n-k)^{2}+\mathrm{O}(n-k)$ flops, so the flop count for all $n-1$ steps is

$$
\sum_{k=1}^{n-1}\left(2(n-k)^{2}+\mathrm{O}(n-k)\right)=\frac{2}{3} n^{3}+\mathrm{O}\left(n^{2}\right)
$$

The relationship of M_{k} to \tilde{M}_{k} is $m_{k}^{t}=\left[\begin{array}{ll}0 & \tilde{m}_{k}^{t}\end{array}\right]$ and

$$
I+m_{k} e_{k}^{t}=M_{k}=\left[\begin{array}{cc}
I & 0 \\
0 & \tilde{M}_{k}
\end{array}\right]=\left[\begin{array}{cc}
I & 0 \\
0 & I+\tilde{m}_{k} e_{1}^{t}
\end{array}\right] .
$$

