
The Francis Algorithm

Recall that we have a shifted QR iteration that converges quickly to a reduced
Hessenberg matrix if the si are close to an eigenvalue of H (in fact, only one
iteration does it if si is an eigenvalue of H (this is called an ultimate shift)). If H is
reduced, we can decouple (or deflate) and continue with a strictly smaller problem
than before. Here is the iteration:

QiRi = Hi − siI
Hi+1 = RiQi + siI = Qt

iHiQi

Nonsymmetric real matrices may have complex eigenvalues, which must occur in
conjugate pairs: u+ iv and u− iv. If we apply a complex shift si = u+ iv to the
iteration, then Qi, Ri and Hi+1 will be complex. This requires more storage, and
more computation (one complex multiplication requires 4 real multiplications and 2
real additions).

Now if we immediately follow the si = u+ iv shift iteration with an iteration with
shift si+1 = u− iv, then everything becomes again real. We can understand this by
noting that two iterations above gives the same Hi+2 as the single iteration

QR = (Hi − siI)(Hi − si+1I)
Hi+2 = QtHiQ.

Even more: R = Ri+1Ri and Q = QiQi+1. So here is a way to apply two complex
conjugate shifts in succession using only real arithmetic! While it appears, that we
have bought this efficiency at the cost of forming G = (Hi − siI)(Hi − si+1I), a
wonderful uniqueness result comes to our aid:

The Implicit Q Theorem says that if Hi+2 = QtHiQ is unreduced, then it is
essentially uniquely determined by Hi and the first column of Q.

Thus we need only compute enough of G to determine the first column of Q, the
remainder of Q is discovered through a Hessenberg reduction. Here are the details:

QRe1 = Ge1 =⇒ Qe1 = ±Ge1/‖G‖2.

So define a Householder reflector, P0, so that P0Ge1 = αe1 (the first step of the
Householder QR factorization of G), and apply this not to G, but to Hi as a
similarity transform: B = P0HiP0. B is no longer Hessenberg, it has a bulge at
b41 6= 0, so we need reflectors P1, P2, . . . , Pn−2 to “chase the bulge” from b41 to b52 to
... to bn,n−2, resp. to “re-Hessenbergize” Hi:

Hi+2 = Pn−2 · · ·P1P0HiP0P1 · · ·Pn−2 = QtHiQ.

All of this was developed in J. Francis’ 1961 paper, along with a scheme for
choosing the shifts si and si+1 as the eigenvalues of the lower right 2× 2 submatrix
of Hi. While fallable, this method – augmented with schemes for detecting
subdiagonal elements “small enough” to allow decoupling and deflation – is the
state of the art general purpose eigenvalue method.


