The Francis Algorithm

Recall that we have a shifted QR iteration that converges quickly to a reduced Hessenberg matrix if the s_{i} are close to an eigenvalue of H (in fact, only one iteration does it if s_{i} is an eigenvalue of H (this is called an ultimate shift)). If H is reduced, we can decouple (or deflate) and continue with a strictly smaller problem than before. Here is the iteration:

$$
\begin{aligned}
Q_{i} R_{i} & =H_{i}-s_{i} I \\
H_{i+1} & =R_{i} Q_{i}+s_{i} I=Q_{i}^{t} H_{i} Q_{i}
\end{aligned}
$$

Nonsymmetric real matrices may have complex eigenvalues, which must occur in conjugate pairs: $u+i v$ and $u-i v$. If we apply a complex shift $s_{i}=u+i v$ to the iteration, then Q_{i}, R_{i} and H_{i+1} will be complex. This requires more storage, and more computation (one complex multiplication requires 4 real multiplications and 2 real additions).

Now if we immediately follow the $s_{i}=u+i v$ shift iteration with an iteration with shift $s_{i+1}=u-i v$, then everything becomes again real. We can understand this by noting that two iterations above gives the same H_{i+2} as the single iteration

$$
\begin{array}{ccc}
Q R & = & \left(H_{i}-s_{i} I\right)\left(H_{i}-s_{i+1} I\right) \\
H_{i+2} & =c & Q^{t} H_{i} Q .
\end{array}
$$

Even more: $R=R_{i+1} R_{i}$ and $Q=Q_{i} Q_{i+1}$. So here is a way to apply two complex conjugate shifts in succession using only real arithmetic! While it appears, that we have bought this efficiency at the cost of forming $G=\left(H_{i}-s_{i} I\right)\left(H_{i}-s_{i+1} I\right)$, a wonderful uniqueness result comes to our aid:

The Implicit Q Theorem says that if $H_{i+2}=Q^{t} H_{i} Q$ is unreduced, then it is essentially uniquely determined by H_{i} and the first column of Q.

Thus we need only compute enough of G to determine the first column of Q, the remainder of Q is discovered through a Hessenberg reduction. Here are the details:

$$
Q R e_{1}=G e_{1} \quad \Longrightarrow \quad Q e_{1}= \pm G e_{1} /\|G\|_{2} .
$$

So define a Householder reflector, P_{0}, so that $P_{0} G e_{1}=\alpha e_{1}$ (the first step of the Householder QR factorization of G), and apply this not to G, but to H_{i} as a similarity transform: $B=P_{0} H_{i} P_{0} . B$ is no longer Hessenberg, it has a bulge at $b_{41} \neq 0$, so we need reflectors $P_{1}, P_{2}, \ldots, P_{n-2}$ to "chase the bulge" from b_{41} to b_{52} to ... to $b_{n, n-2}$, resp. to "re-Hessenbergize" H_{i} :

$$
H_{i+2}=P_{n-2} \cdots P_{1} P_{0} H_{i} P_{0} P_{1} \cdots P_{n-2}=Q^{t} H_{i} Q .
$$

All of this was developed in J. Francis' 1961 paper, along with a scheme for choosing the shifts s_{i} and s_{i+1} as the eigenvalues of the lower right 2×2 submatrix of H_{i}. While fallable, this method - augmented with schemes for detecting subdiagonal elements "small enough" to allow decoupling and deflation - is the state of the art general purpose eigenvalue method.

