
Comparing Reals vs. Comparing Floats

When programming with floats, we know that the assignment statement
m = x

isn’t to be interpreted as an equation, but as

find a place in memory we will call m, and store x there.

Some languages use other symbols, like ‘:=’ or ‘<−’ (instead of ‘=’) to make it clear that
this is assignment, not an equation. But sometimes we want “equals” as in “equation”, and
programming languages need such a mechanism. For example, in the Matlab language
m == 1

returns TRUE if (the value in) m is 1, and FALSE otherwise.

So how are we to test the real variable equation x = y in floating point? The short answer
is: we cannot! We first have to represent x and y as floats, say fx = fl(x) and fy = fl(y).

If x and y are in the floating point range, then the test
fx == fy

will return TRUE iff their floating point representations are the same. What we are testing
is whether or not there exists dx and dy, with |dx|, |dy| ≤ µ, for which
x(1 + dx) = y(1 + dy) is a float. This implies |x− y| ≤ µ(|x|+ |y|). But the converse
doesn’t hold: for example, if x ∈ R is exactly halfway between 2 neighboring floats, then for
any ε > 0, fl(x− ε) and fl(x+ ε) are different floats. For example, there are x, y ∈ R that do
not overflow, which differ by 10290 for which fl(x) == fl(y) is TRUE (exponential spacing),
and there are those that differ by 10−290 and return FALSE (binning). To test x == y in
this case, I very rarely use anything more stringent than |fx− fy| ≤ 2µ ∗max{|fx|, |fy|}.

If fx and fy both underflow, the situation is different. We cannot give a relative bound
like above, and subnormals make the situation complicated to talk about: The number
realmin is the smallest positive normalized float, and in Matlab realmin is about 10−308.
The floating point statement
fx == 0

is testing fl(x) against ±0, and depends on whether or not subnormals are used: if
underflow is set to zero, then |x| < realmin means fx is set to ±0, while if subnormals are
in effect, then |x| < µ∗realmin means fx is set to ±0. [Subnormals are the denormalized

floats fx, with |fx| ∈ [µ ∗ realmin, realmin); Matlab uses subnormals.]

Now the equations x = 0 and 1 + x = 1 are equivalent over R; they have the same solution
set: {0}. But the real numbers x for which
fx == 0

is TRUE live in the interval (−realmin, realmin), while those for which
1 + fx == 1

is TRUE are the real interval (−µ,µ). Since (−realmin, realmin) ⊂ (−µ,µ), we can say
fx == 0 ⇒ 1 + fx == 1, but 1 + fx == 1 ; fx == 0.

There are many floats for which 1 + fx == 1 is TRUE, but fx == 0 is FALSE. No
normalized floats satisfy fx == 0, but (in double precision) almost 0.4 percent of all floats
satisfy 1+fx == 1. Another way of saying this (in double precision) is that about 7× 1016

of the about 2× 1019 floats are |less than| µ. How we test for “small” depends on why we
are testing. Whether to use a relative measure, like µ, or an absolute, like realmin, is a
problem-dependent – but fundamental – decision.


