Comparing Reals vs. Comparing Floats

When programming with floats, we know that the assignment statement m = x

isn't to be interpreted as an equation, but as

find a place in memory we will call m, and store x there.

Some languages use other symbols, like ':=' or '<-' (instead of '=') to make it clear that this is assignment, not an equation. But sometimes we want "equals" as in "equation", and programming languages need such a mechanism. For example, in the Matlab language m == 1

returns TRUE if (the value in) m is 1, and FALSE otherwise.

So how are we to test the real variable equation x = y in floating point? The short answer is: we cannot! We first have to represent x and y as floats, say fx = fl(x) and fy = fl(y).

If x and y are in the floating point range, then the test fx == fy

will return TRUE iff their floating point representations are the same. What we are testing is whether or not there exists dx and dy, with $|dx|, |dy| \leq \mu$, for which x(1 + dx) = y(1 + dy) is a float. This implies $|x - y| \leq \mu(|x| + |y|)$. But the converse doesn't hold: for example, if $x \in \mathbb{R}$ is exactly halfway between 2 neighboring floats, then for any $\epsilon > 0$, fl $(x - \epsilon)$ and fl $(x + \epsilon)$ are different floats. For example, there are $x, y \in \mathbb{R}$ that do not overflow, which differ by 10²⁹⁰ for which fl(x) == fl(y) is TRUE (exponential spacing), and there are those that differ by 10⁻²⁹⁰ and return FALSE (binning). To test x == y in

this case, I very rarely use anything more stringent than $|fx - fy| \le 2\mu * max\{|fx|, |fy|\}$.

If fx and fy both underflow, the situation is different. We cannot give a relative bound like above, and subnormals make the situation complicated to talk about: The number *realmin* is the smallest positive normalized float, and in Matlab *realmin* is about 10^{-308} . The floating point statement

fx == 0

is testing fl(x) against ± 0 , and depends on whether or not subnormals are used: if underflow is set to zero, then |x| < realmin means fx is set to ± 0 , while if subnormals are in effect, then $|x| < \mu * realmin$ means fx is set to ± 0 . [Subnormals are the denormalized floats fx, with $|fx| \in [\mu * realmin, realmin)$; Matlab uses subnormals.]

Now the equations x = 0 and 1 + x = 1 are equivalent over \mathbb{R} ; they have the same solution set: {0}. But the real numbers x for which fx == 0is TRUE live in the interval (*-realmin*, *realmin*), while those for which 1 + fx == 1is TRUE are the real interval $(-\mu, \mu)$. Since $(-realmin, realmin) \subset (-\mu, \mu)$, we can say $fx == 0 \Rightarrow 1 + fx == 1$, but $1 + fx == 1 \Rightarrow fx == 0$.

There are many *floats* for which 1 + fx == 1 is TRUE, but fx == 0 is FALSE. No normalized floats satisfy fx == 0, but (in double precision) almost 0.4 percent of all floats satisfy 1+fx == 1. Another way of saying this (in double precision) is that about 7×10^{16} of the about 2×10^{19} floats are |less than| μ . How we test for "small" depends on *why* we are testing. Whether to use a relative measure, like μ , or an absolute, like *realmin*, is a problem-dependent – but fundamental – decision.