Comparing Reals vs. Comparing Floats

When programming with floats, we know that the assignment statement
$\mathrm{m}=\mathrm{x}$
isn't to be interpreted as an equation, but as

```
find a place in memory we will call m, and store x there.
```

Some languages use other symbols, like ': $=$ ' or ' $<-$ ' (instead of ' $=$ ') to make it clear that this is assignment, not an equation. But sometimes we want "equals" as in "equation", and programming languages need such a mechanism. For example, in the Matlab language m == 1
returns TRUE if (the value in) m is 1, and FALSE otherwise.
So how are we to test the real variable equation $x=y$ in floating point? The short answer is: we cannot! We first have to represent x and y as floats, say $f x=\mathrm{fl}(x)$ and $f y=\mathrm{fl}(y)$.

If x and y are in the floating point range, then the test fx == fy
will return TRUE iff their floating point representations are the same. What we are testing is whether or not there exists $d x$ and $d y$, with $|d x|,|d y| \leq \boldsymbol{\mu}$, for which
$x(1+d x)=y(1+d y)$ is a float. This implies $|x-y| \leq \boldsymbol{\mu}(|x|+|y|)$. But the converse doesn't hold: for example, if $x \in \mathbb{R}$ is exactly halfway between 2 neighboring floats, then for any $\epsilon>0, \mathrm{fl}(x-\epsilon)$ and $\mathrm{fl}(x+\epsilon)$ are different floats. For example, there are $x, y \in \mathbb{R}$ that do not overflow, which differ by 10^{290} for which $\mathrm{fl}(x)==\mathrm{fl}(y)$ is TRUE (exponential spacing), and there are those that differ by 10^{-290} and return FALSE (binning). To test $x==y$ in this case, I very rarely use anything more stringent than $|f x-f y| \leq 2 \boldsymbol{\mu} * \max \{|f x|,|f y|\}$.

If $f x$ and $f y$ both underflow, the situation is different. We cannot give a relative bound like above, and subnormals make the situation complicated to talk about: The number realmin is the smallest positive normalized float, and in Matlab realmin is about 10^{-308}. The floating point statement
$\mathrm{fx}=0$
is testing $\mathrm{fl}(x)$ against ± 0, and depends on whether or not subnormals are used: if underflow is set to zero, then $|x|<$ realmin means $f x$ is set to ± 0, while if subnormals are in effect, then $|x|<\boldsymbol{\mu} *$ realmin means $f x$ is set to ± 0. [Subnormals are the denormalized floats $f x$, with $|f x| \in[\boldsymbol{\mu} *$ realmin, realmin); Matlab uses subnormals.]

Now the equations $x=0$ and $1+x=1$ are equivalent over \mathbb{R}; they have the same solution set: $\{0\}$. But the real numbers x for which
fx == 0
is TRUE live in the interval (-realmin, realmin), while those for which
$1+\mathrm{fx}={ }^{1}$
is TRUE are the real interval $(-\boldsymbol{\mu}, \boldsymbol{\mu})$. Since (-realmin, realmin $) \subset(-\boldsymbol{\mu}, \boldsymbol{\mu})$, we can say

$$
f x==0 \Rightarrow 1+f x==1, \quad \text { but } 1+f x==1 \Rightarrow f x==0 .
$$

There are many floats for which $1+\mathrm{fx}==1$ is TRUE, but $\mathrm{fx}==0$ is FALSE. No normalized floats satisfy $\mathrm{fx}==0$, but (in double precision) almost 0.4 percent of all floats satisfy $1+\mathrm{fx}==1$. Another way of saying this (in double precision) is that about 7×10^{16} of the about 2×10^{19} floats are |less than $\boldsymbol{\mu}$. How we test for "small" depends on why we are testing. Whether to use a relative measure, like $\boldsymbol{\mu}$, or an absolute, like realmin, is a problem-dependent - but fundamental - decision.

