Function Evaluation

In scientific computing we routinely evaluate functions from spaces over real (or complex) numbers into real (or complex) spaces. We write

$$
f: D \rightarrow R
$$

to say that f is a function with domain D and range R (each element of D is associated (through f) to exactly one element of R (as in $f(d)=r$)). You can think of D and R as subsets of the real numbers, but often they are finite dimensional vector spaces over real (or complex) numbers.

We are using a finite model of the reals to approximate the domain and range spaces, so when we use the term "evaluate f at x ", we really mean "evaluate f at our approximation of x ", which will give us an approximation to f evaluated at our approximation to x.

Some notation might help here. Let's say we'd like to evaluate f at x, that is, we'd like to compute $y=f(x)$. If \bar{x} is our approximation of $x \in D$, then (like-it-or-not) we are actually trying to compute $\tilde{y}=f(\bar{x})$. But because of errors, we instead return \bar{y} as our approximation to \tilde{y}. Our attempt to compute $y=f(x)$ returns instead $\bar{y}=\bar{f}(\bar{x})$, and we hope that $\bar{y} \approx \tilde{y} \approx y$.

In summary:
$y=f(x)$ is what we want, but we have \bar{x} instead of x.
$\tilde{y}=f(\bar{x})$, is what we try to compute, but almost certainly can't (errors).
$\bar{y}=\bar{f}(\bar{x})$ is what we actually return.
Attempting to predict or discover how much \bar{y} and y might differ is a rather difficult question in general, and is an important part of numerical analysis. One way to simplify the question is to imagine we can compute \tilde{y} : When we speak of "the magic method" we imagine a method which returns the \bar{y} that is the closest element of our model of R to \tilde{y}. This is the best we might do, and is a useful concept to keep in mind in any analysis of computing with real numbers. We'll see that how good (or poorly) the magic method performs is a measure of how difficult our problem is.

You might think about just how good an approximation the magic method might give for various functions (e.g. $y=f(x)=1 / x, y=f(x)=\sin (x)$, $y=f(A, b)=A^{-1} b$, etc.), or how you might evaluate $f(x)$ using only arithmetic operations, or how you might approximate the error $y-\bar{y}$.

You might think that "evaluate f at x " is a trivial task, but if you think about trying to solve any problem (which has a unique solution), then you come to see that this is exactly what we are trying to do. At the risk of getting too philosophical, I also remind you that this function that we are trying to evaluate is almost certainly an only approximation of some (more complicated, or unknown, or unknowable) function.

