The Action of Householder Reflectors

Let A € R™". m > n. You may recall that the Householder QR factorization can be
written as

Hp"'HQHlA: R,

where p = min (n,m — 1) and H, = I — (ﬁ)uku}fC is a Householder reflector which
k

introduces zeros into positions k + 1 to m of the £ column of the matrix
A®=1) = H, ... HyH, A. This gives A = QR, where we define

Q:HlHQ"'Hp.

The H; are not explicitly formed, since that is very inefficient, and since they are
completely determined by the u vectors. The matrix @) is rarely formed, either. What
we usually do is save the u;’s. If we let @, be the array whose j* column is u;, it
would be called the "factored form” of (). In Matlab, if u is our variable name for u;,
then we might write Qu(:,j) = u. In a memory efficient code, we would only save
entries j : m of u; (4; = u;(j : m)), and would use the lower triangle of A (plus an
n-vector) to store @;, j=1,...,p.

Later we will need to find the vector ¢ = Q'b, and instead of explicitly forming ), we
use the routine HOUSEQACT. Notice that

C: QtB - Hp"'HQHlB,

so we write HOUSEQACT to form this product:

C = B;
for j=1:p,

C = Hj * C; %but you code this line the right way...
end

Of course, it would be just as easy to write code to implement
C:QB:HlHQ"'HpB,

and BQ! or BQ. In fact, while it is rarely needed explicitly, we could compute () above
as Q@ =QI,or Q =10Q,...

We discuss how to find the u;’s and how to code the algorithm above efficiently for
speed and memory on other pages, but a good implementation of the loop above
should be all the convincing you need to understand that Householder reflectors are
never explicitly computed. If C' € R™", a good implementation of the pseudocode
above requires r ) " 4(m — j) & 2mnr(2 — ;) flops, and even if we knew @ € R™""
explicitly, that matrix product would require 2m?r flops (which is more costly than
HOUSEQACT since n < m).



