
The Action of Householder Reflectors

Let A ∈ Rm×n, m ≥ n. You may recall that the Householder QR factorization can be
written as

Hp · · ·H2H1A = R,

where p = min (n, m− 1) and Hk = I − (2
ut

kuk
)uku

t
k is a Householder reflector which

introduces zeros into positions k + 1 to m of the kth column of the matrix
A(k−1) = Hk−1 · · ·H2H1A. This gives A = QR, where we define

Q = H1H2 · · ·Hp.

The Hj are not explicitly formed, since that is very inefficient, and since they are
completely determined by the u vectors. The matrix Q is rarely formed, either. What
we usually do is save the uj’s. If we let Qu be the array whose jth column is uj, it
would be called the ”factored form” of Q. In Matlab, if u is our variable name for uj,
then we might write Qu(:, j) = u. In a memory efficient code, we would only save
entries j : m of uj (ũj = uj(j : m)), and would use the lower triangle of A (plus an
n-vector) to store ũj, j = 1, . . . , p.

Later we will need to find the vector c = Qtb, and instead of explicitly forming Q, we
use the routine HOUSEQACT. Notice that

C = QtB = Hp · · ·H2H1B,

so we write HOUSEQACT to form this product:

C = B;

for j=1:p,

C = Hj * C; %but you code this line the right way...

end

Of course, it would be just as easy to write code to implement

C = QB = H1H2 · · ·HpB,

and BQt or BQ. In fact, while it is rarely needed explicitly, we could compute Q above
as Q = QI, or Q = IQ,...

We discuss how to find the uj’s and how to code the algorithm above efficiently for
speed and memory on other pages, but a good implementation of the loop above
should be all the convincing you need to understand that Householder reflectors are
never explicitly computed. If C ∈ Rm×r, a good implementation of the pseudocode
above requires r

∑n
j=0 4(m− j) ≈ 2mnr(2− n

m
) flops, and even if we knew Q ∈ Rm×m

explicitly, that matrix product would require 2m2r flops (which is more costly than
HOUSEQACT since n ≤ m).

