Crank-Nicolson

$$u_t = u_{xx}, \quad x \in (0, 1), \quad t \in (0, T],$$
$$u(x, 0) = f(x), \quad x \in (0, 1),$$
$$u(0, t) = g(t), \quad t \in (0, T], \qquad u(1, t) = h(t), \quad t \in (0, T]$$

Here we have a 2^{nd} order linear homogeneous parabolic pde, with initial conditions, f, and (Dirichlet) boundary conditions, g and h. It is often called the *heat equation* or *diffusion equation*, and we will use it to discuss numerical methods which can be used for it and for more general parabolic problems.

Finite difference methods replace the differential operators (here $\frac{\partial}{\partial t}$ and $\frac{\partial^2}{\partial x^2}$) with difference operators (numerical differentiation formulae). For example, we can approximate $u_t(x,t)$ by [u(x,t+k) - u(x,t)]/k, and can replace the term u_t in the equation with the term $(U_{i,j+1} - U_{ij})/k$. This replacement introduces an O(k) truncation error. If we now replace $u_{xx}(x,t)$ with $[U_{i+1,j} - 2U_{ij} + U_{i-1,j}]/h^2$, then on a grid with time increment k and space increment h, $u_t = u_{xx}$ becomes

$$(U_{i,j+1} - U_{ij})/k = (U_{i+1,j} - 2U_{ij} + U_{i-1,j})/h^2$$

which models the heat equation with truncation error $O(k + h^2)$. This can be solved for $U_{i,j+1}$, and letting $r = k/h^2$, gives the equation

$$U_{i,j+1} = rU_{i+1,j} + (1-2r)U_{ij} + rU_{i-1,j}.$$

Implemented as a single-step method this has l.t.e. $O(k^2 + kh^2)$ for $r \in (0, \frac{1}{2}]$.

We will return here in another page to analyze these truncation errors, but let's push on. If $r > \frac{1}{2}$, then the method is unstable and this forces a very small time step $k = O(h^2)$. Notice that using a backward difference formula for u_t gives

$$(U_{i,j+1} - U_{ij})/k = (U_{i+1,j+1} - 2U_{ij+1} + U_{i-1,j+1})/h^2$$

and averaging these forward and backward difference equations gives

$$U_{i,j+1} - U_{ij} = r \left(\lambda [U_{i+1,j+1} - 2U_{ij+1} + U_{i-1,j+1}] + (1-\lambda) [U_{i+1,j} - 2U_{ij} + U_{i-1,j}] \right).$$

Now we have 3 parameters at our disposal, h, k and λ . With $\lambda = 0$, we have the explicit method above, $\lambda = \frac{1}{2}$ gives the *Crank-Nicolson method*, and $\lambda = 1$ is called the *fully implicit* or the O'Brien form. This method is stable for all positive r as long as $\lambda \geq \frac{1}{2}(1-\frac{1}{2r})$. For all positive λ , we need to solve a system of linear equations at each time step. In matrix form, the iteration looks like $A\mathbf{U}_{j+1} = B\mathbf{U}_j + b$, where b includes boundary conditions, and A and B are tridiagonal matrices. The ith interior rows of A and B are zero except

$$[a_{i-1,i} \ a_{ii} \ a_{i+1,i}] = [-r\lambda \ (1+2r\lambda) \ -r\lambda] \ \text{and} \ [b_{i-1,i} \ b_{ii} \ b_{i+1,i}] = [r(1-\lambda) \ (1-2r(1-\lambda)) \ r(1-\lambda)].$$