Crank-Nicolson

$$
\begin{gathered}
u_{t}=u_{x x}, \quad x \in(0,1), \quad t \in(0, T], \\
u(x, 0)=f(x), \quad x \in(0,1), \\
u(0, t)=g(t), \quad t \in(0, T], \quad u(1, t)=h(t), \quad t \in(0, T]
\end{gathered}
$$

Here we have a $2^{\text {nd }}$ order linear homogeneous parabolic pde, with initial conditions, f, and (Dirichlet) boundary conditions, g and h. It is often called the heat equation or diffusion equation, and we will use it to discuss numerical methods which can be used for it and for more general parabolic problems.

Finite difference methods replace the differential operators (here $\frac{\partial}{\partial t}$ and $\frac{\partial^{2}}{\partial x^{2}}$) with difference operators (numerical differentiation formulae). For example, we can approximate $u_{t}(x, t)$ by $[u(x, t+k)-u(x, t)] / k$, and can replace the term u_{t} in the equation with the term $\left(U_{i, j+1}-U_{i j}\right) / k$. This replacement introduces an $\mathrm{O}(k)$ truncation error. If we now replace $u_{x x}(x, t)$ with $\left[U_{i+1, j}-2 U_{i j}+U_{i-1, j}\right] / h^{2}$, then on a grid with time increment k and space increment $h, u_{t}=u_{x x}$ becomes

$$
\left(U_{i, j+1}-U_{i j}\right) / k=\left(U_{i+1, j}-2 U_{i j}+U_{i-1, j}\right) / h^{2}
$$

which models the heat equation with truncation error $\mathrm{O}\left(k+h^{2}\right)$. This can be solved for $U_{i, j+1}$, and letting $r=k / h^{2}$, gives the equation

$$
U_{i, j+1}=r U_{i+1, j}+(1-2 r) U_{i j}+r U_{i-1, j} .
$$

Implemented as a single-step method this has l.t.e. $\mathrm{O}\left(k^{2}+k h^{2}\right)$ for $r \in\left(0, \frac{1}{2}\right]$.
We will return here in another page to analyze these truncation errors, but let's push on. If $r>\frac{1}{2}$, then the method is unstable and this forces a very small time step $k=\mathrm{O}\left(h^{2}\right)$. Notice that using a backward difference formula for u_{t} gives

$$
\left(U_{i, j+1}-U_{i j}\right) / k=\left(U_{i+1, j+1}-2 U_{i j+1}+U_{i-1, j+1}\right) / h^{2}
$$

and averaging these forward and backward difference equations gives
$U_{i, j+1}-U_{i j}=r\left(\lambda\left[U_{i+1, j+1}-2 U_{i j+1}+U_{i-1, j+1}\right]+(1-\lambda)\left[U_{i+1, j}-2 U_{i j}+U_{i-1, j}\right]\right)$.
Now we have 3 parameters at our disposal, h, k and λ. With $\lambda=0$, we have the explicit method above, $\lambda=\frac{1}{2}$ gives the Crank-Nicolson method, and $\lambda=1$ is called the fully implicit or the O'Brien form. This method is stable for all positive r as long as $\lambda \geq \frac{1}{2}\left(1-\frac{1}{2 r}\right)$. For all positive λ, we need to solve a system of linear equations at each time step. In matrix form, the iteration looks like $A \mathbf{U}_{j+1}=B \mathbf{U}_{j}+b$, where b includes boundary conditions, and A and B are tridiagonal matrices. The $\mathrm{i}^{\text {th }}$ interior rows of A and B are zero except

$$
\left[\begin{array}{lll}
a_{i-1, i} & a_{i i} & a_{i+1, i}
\end{array}\right]=\left[\begin{array}{lll}
-r \lambda & (1+2 r \lambda) & -r \lambda
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
b_{i-1, i} & b_{i i} & b_{i+1, i}
\end{array}\right]=\left[\begin{array}{lll}
r(1-\lambda) & (1-2 r(1-\lambda)) & r(1-\lambda)
\end{array}\right] .
$$

