Coordinates

Let *R* be a linear space with basis $\mathcal{B} = \{x_1, x_2, \ldots, x_n\}$. Then if *x* is any vector in *R*, we can write $x = \sum_{i=1}^{n} c_i x_i$, and the c_i are unique. Thus, for this basis, each $x \in R$ has associated with it a unique n-tuple (c_1, c_2, \ldots, c_n) . This n-tuple is called the coordinate vector for *x* wrt \mathcal{B} , and the c_i the coordinates of *x* wrt \mathcal{B} . A useful notation is $[x]_{\mathcal{B}} = (c_1, c_2, \ldots, c_n)^t$.

So x is the (possibly abstract) vector, and $[x]_{\mathcal{B}}$ is the coordinate vector for x; not abstract at all, but a sequence of n scalars. If $\mathcal{B} = \{e_1, e_2, \ldots, e_n\}$, the standard ordered basis for \mathbb{R}^n , then the vector $(2, -1, 3)^t = 2e_1 - 1e_2 + 3e_3$, and its coordinates are $(c_1, c_2, c_3) = (2, -1, 3)$ (after all, this is the *standard* ordered basis for \mathbb{R}^3). But now, if we take as our basis $\mathcal{B} = \{e_1, e_3, e_2\}$, then the coordinate vector of $x = (2, -1, 3)^t$ is $[x]_{\mathcal{B}} = (2, 3, -1)^t$.

So how do we find the coordinates for a vector x with respect to some basis \mathcal{B} ? Well, if $\mathcal{B} = \{x_1, x_2, \ldots, x_n\}$, then we want to find the c_i in $x = \sum_{i=1}^n c_i x_i$. If we are in \mathbb{R}^n , then we can simply construct the matrix $P = [x_1, x_2, \ldots, x_n]$, whose j^{th} column is x_j . Then we have the nonsingular system of linear equations $P[x]_{\mathcal{B}} = x$, whose solution is $[x]_{\mathcal{B}} = P^{-1}x$. If now we want to change basis, that is, represent xin the basis $\mathcal{B}' = \{y_1, y_2, \ldots, y_n\}$, then we construct $S = [y_1, y_2, \ldots, y_n]$ and solve $P[x]_{\mathcal{B}} = x = S[x]_{\mathcal{B}'}$ to get $[x]_{\mathcal{B}'} = S^{-1}P[x]_{\mathcal{B}}$. Notice that the j^{th} column of $S^{-1}P$ is $[x_j]_{\mathcal{B}'}$. $S^{-1}P$ is called the change of basis matrix from \mathcal{B} to \mathcal{B}' .

Let's move on to linear operators and matrices. In a finite dimensional linear space we can also give linear operators coordinates. The coordinate representation of a linear operator is a matrix. Let U and V be linear spaces with bases $\mathcal{U} = \{u_1, u_2, \ldots, u_n\}$ and $\mathcal{V} = \{v_1, v_2, \ldots, v_m\}$, respectively. Suppose $L: U \longrightarrow V$ is linear. We would like to represent L as the matrix $[L]_{\mathcal{V},\mathcal{U}}$ in such a way that if v = L(u), then $[v]_{\mathcal{V}} = [L]_{\mathcal{V},\mathcal{U}}[u]_{\mathcal{U}}$. If we let $[v]_{\mathcal{V}} = [c_i], [u]_{\mathcal{U}} = [b_j], \text{ and } [L]_{\mathcal{V},\mathcal{U}} = [a_{ij}],$ then we must have $c_i = \sum_{j=1}^n a_{ij}b_j$, $i = 1, 2, \ldots, m$. In particular, this must hold for $u = u_j$ (where all b's are zero but the jth): $c_i = a_{ij}b_j$, $i = 1, 2, \ldots, m$. So the jth column of $[L]_{\mathcal{V},\mathcal{U}}$ must be the coordinates of $L(u_j)$ in the basis \mathcal{V} , i.e. $[L]_{\mathcal{V},\mathcal{U}}e_j = [L(u_j)]_{\mathcal{V}}$; and this completely describes $[L]_{\mathcal{V},\mathcal{U}}$.

Now consider the identity map from U to U, given by I(u) = u. The matrix for I in the basis \mathcal{U} has as its j^{th} column $[u_j]_{\mathcal{U}}$, so $[I]_{\mathcal{U},\mathcal{U}} = I$, the identity matrix. What about $[I]_{\mathcal{V},\mathcal{U}}$? Well, the j^{th} column of $[I]_{\mathcal{V},\mathcal{U}}$ is $[u_j]_{\mathcal{V}}$, which is precisely the change of basis matrix $S^{-1}P$ that we found above! Also, $[I]_{\mathcal{V},\mathcal{U}}[I]_{\mathcal{U},\mathcal{V}} = [I]_{\mathcal{V},\mathcal{V}} = I$, so the change of basis matrix from \mathcal{U} to \mathcal{V} is the inverse of the change of basis matrix from \mathcal{V} to \mathcal{U} , and similarity is simply $[L]_{\mathcal{U},\mathcal{U}} = [I]_{\mathcal{U},\mathcal{V}}[L]_{\mathcal{V},\mathcal{U}}$.