
Composite Newton-Cotes

Recall that the Newton-Cotes rules were based on Lagrange interpolation, and that high
degree polynomial interpolation typically generates wildly oscillating interpolants. This
problem for the Newton-Cotes rules leads us naturally to the most often used rules for fixed
data (e.g. equally spaced) quadrature.

Observe that for any c ∈ [a, b] for which f is defined,∫ b

a
f(x)dx =

∫ c

a
f(x)dx+

∫ b

c
f(x)dx,

so we can construct rules over [a, b] by piecing-together rules over subintervals of [a, b]. For
example, the trapezoidal rule applied twice over [a, b] gives∫ b

a f(x)dx ≈
a+b
2 −a

2 (f(a) + f(a+b
2)) +

b−a+b
2

2 (f(a+b
2 + f(b))

= h
2 (f(a) + 2f(a+b

2) + f(b)).

On n+ 1 nodes and with h = (b− a)/n, the composite trapezoidal rule is∫ b

a
f(x)dx =

h

2
[f(x0) + 2

n−1∑
i=1

f(xi) + f(xn)] − b− a
12

h2f ′′(µ1),

and (taking n even) the (very popular) composite Simpson’s rule is∫ b

a
f(x)dx =

h

3
[f(x0) + 2

n/2−1∑
i=1

f(x2i) + 4
n/2∑
i=1

f(x2i−1) + f(xn)] − b− a
180

h4f (4)(µ2).

Hopefully you are wondering whether numerical integration is as illcondioned as numerical
differentiation. Let’s look at the composite Simpson’s rule. As before we will model the
rounding errors associated with the evaluation of f and the evaluation of the quadrature rule
using e(x) in f(x) = f(x) + e(x). We compute

I ≡ h

3
[f(x0) +

n/2∑
i=1

f(x2i) + 4
n/2∑
i=1

f(x2i−1) + f(xn)].

We then have∫ b

a
f(x)dx = I +

h

3
[e(x0) + 2

n/2∑
i=1

e(x2i) + 4
n/2∑
i=1

e(x2i−1) + e(xn)] − b− a
180

h4f (4)(µ2),

where the 2nd and 3rd terms are the rounding and truncation error terms respectively. The
rounding error term is actually a quadrature rule for

∫ b
a e(x)dx, so we expect it to be small

(why?), making the following a very pessimistic analysis. Let |e(x)| ≤Mr on [a, b]. Then

|
∫ b
a f(x)dx− I| = h

3 [e(x0) + 2
∑n/2

i=1 e(x2i) + 4
∑n/2

i=1 e(x2i−1) + e(xn)] − b−a
180 h

4f (4)(µ2)

≤ hnMr − b−a
180 h

4f (4)(µ2)

= (b− a)Mr − b−a
180 h

4f (4)(µ2).

In numerical differentiation, the error was unbounded as h→ 0. This time, as h→ 0, even this
pessimistic error bound goes to (b− a)Mr, where (as before) Mr depends on the machine
precision and the conditioning of “evaluate f at the nodes”. Remarkably, if f ′ is bounded, the
central limit theorem suggests that the total error behaves as µ O(

√
h) as h→ 0.

