
The Cholesky Factorization

Symmetric matrices are important because they are common in applications, have
some very nice properties, and because the symmetry can be exploited by
algorithms to save time and memory. For example, we know that if A = At has an
LU factorization, then A = LDLt can be computed in about n3/3 flops.

Because of small pivots, the LDLt algorithm is not backward stable for general
symmetric matrices. However, there are matrices for which pivoting is never needed:
for which the diagonal element is always the |largest| element in its column. The
most important of these are the symmetric positive definite (spd) matrices.

A ∈ Rn×n is spd if it is symmetric and if for all x 6= 0 ∈ Rn, xtAx > 0. All matrices
of the form X tX are spd iff X has linearly independent columns.

A matrix has an LDLt factorization with dii > 0 iff it is spd. In that case we may
write

A = LDLt = LD1/2D1/2Lt ≡ GGt.

The Cholesky factorization, which computes A = GGt directly, is a simple and
popular alternative to the LDLt factorization for spd matrices.

The classical algorithm appears easily by looking at the columns of A = GGt with
lower triangular G. Assume we know the first k−1 columns of G, and look at the
kth column of A = GGt:

ak ≡ Aek = GGtek = [g1, g2, . . . , gn]z.

Here zt is the kth row of (lower triangular) G, so we can write

ak =
k∑

i=1

gkigi,

or

gkkgk = ak −
k−1∑
i=1

gkigi.

In particular g2
kk = akk −

∑k−1
j=1 g

2
kj, so we take the positive root and solve for gk:

gk = (ak −
k−1∑
i=1

gkigi)/gkk.

This method runs to completion (no zero or complex roots) iff A is spd. It requires
1
3
n3 + O(n2) flops, and no extra memory if the lower triangular of A is overwritten

by that of G. With respect to rounding errors, the computed G̃ satisfies

G̃G̃t = A+ δA, where ‖δA‖ ≤ 12n2µ‖A‖.


