Three Views of Cancellation

Let x and y be real numbers such that x, y and $x+y$ do not overflow or underflow. How good is the floating point approximation $\mathrm{fl}(\mathrm{fl}(x)+\mathrm{fl}(y))$ to the true value $x+y$? Write $\bar{x}=\mathrm{fl}(x), \bar{y}=\mathrm{fl}(y)$, and $\bar{z}=\mathrm{fl}(\bar{x}+\bar{y})$. If $z=x+y$, then the relative error in the computed sum is

$$
\frac{|z-\bar{z}|}{|z|} .
$$

- First, an algorithmic perspective: Suppose $x=0 . d_{1} d_{2} \ldots d_{s} d_{s+1} \ldots d_{t} d_{t+1} \ldots \times \beta^{e}$, and $y=-0 . d_{1} d_{2} \ldots d_{s} e_{s+1} \ldots e_{t} e_{t+1} \ldots \times \beta^{e}$, with $\bar{x}=0 . d_{1} d_{2} \ldots d_{s} d_{s+1} \ldots d_{t} \times \beta^{e}$ and $\bar{y}=-0 . d_{1} d_{2} \ldots d_{s} e_{s+1} \ldots e_{t} \times \beta^{e}$. We have set this up so that x and y are opposite numbers up to s digits. Then (without loss of generality take $e_{s+1} \leq d_{s+1}$)

$$
\bar{x}+\bar{y}= \pm 0.00 \ldots 0 f_{s+1} f_{s+2} \ldots f_{t} f_{t+1} \times \beta^{e}
$$

giving

$$
\bar{z}=\mathrm{fl}(\bar{x}+\bar{y})= \pm f_{s+1} f_{s+2} \ldots f_{t} g_{1} g_{2} \ldots g_{s} \times \beta^{e-s}
$$

Now \bar{z} carries with it the s digits g_{1}, \ldots, g_{s} which are completely meaningless! The first s digits of x and y cancelled out, and as those zeros slid off to the left, they were replaced by garbage on the right. If x and y have the same sign, there is no cancellation, but if s is very large the result can be catastrophic.
Notice that s can be large if $x+y \approx 0$.

- Now an error analysis: By the FAFA and the FRT there exist $\left|\epsilon_{x}\right|,\left|\epsilon_{y}\right|,|\epsilon| \leq \mu$ such that

$$
\bar{z}=\mathrm{fl}(\bar{x}+\bar{y})=\left(x\left(1+\epsilon_{x}\right)+y\left(1+\epsilon_{y}\right)\right)(1+\epsilon),
$$

so

$$
|z-\bar{z}|=\left|x\left(\epsilon_{x}+\epsilon\right)+y\left(\epsilon_{y}+\epsilon\right)+\mathrm{O}\left(\mu^{2}\right)\right| \leq 2 \mu(|x|+|y|)+\mathrm{O}\left(\mu^{2}\right)
$$

This gives an upper bound on the relative error:

$$
\frac{|z-\bar{z}|}{|z|} \leq 2 \mu \frac{|x|+|y|}{|x+y|}+\mathrm{O}\left(\mu^{2}\right)
$$

Notice that this can be large if $x+y \approx 0$.

- Finally, we do a sensitivity analysis: Consider the problem "evaluate the function $f(z)=x+z$ at $z=y$ ". Small relative perturbations in z can be magnified in $f(z)$ by the relative condition number

$$
\nu=\frac{|y|\left|f^{\prime}(y)\right|}{f(y) \mid}=\frac{|y|}{|x+y|} .
$$

Notice that this can be large if $x+y \approx 0$.

