
Classical Gram–Schmidt vs Modified Gram–Schmidt

Let A ∈ Rm×n, with m ≥ n, and let A have n linearly independent columns
a1, a2, . . . , an. There are many ways to implement the Gram–Schmidt process. Here
are two very different implementations:

Classical Modified
for k=1:n, for k=1:n,

w = ak w = ak

for j = 1:k-1, for j=1:k-1,
rjk = qt

jw
end rjk = qt

jw
for j = 1:k-1, w = w − rjkqj

w = w − rjkqj

end end
rkk = ‖w‖2 rkk = ‖w‖2
qk = w/rkk qk = w/rkk

end end

Please study the pseudocode above carefully. In exact arithmetic, these two
methods generate exactly the same output (exercise: convince yourself of this). The
algorithm genotypes are very similar (MGS is CGS with a few “pieces of DNA”
removed). In exact arithmetic the phenotypes are identical, while in the presence of
rounding errors the phenotypes are dramatically different.

In classical Gram–Schmidt (CGS) we compute the (signed) lengths of the
orthogonal projections of w = ak onto q1, q2, . . . , qk−1, and then subtract those
projections (and the rounding errors) from w. If Qk−1 = [q1, q2, . . . , qk−1], then the
orthogonal projector onto ColSp(Qk−1) is P = Qk−1(Q

t
k−1Qk−1)

−1Qt
k−1. If Qk−1 has

orthonormal columns, then P = Qk−1Q
t
k−1:

w = (I −Qk−1Q
t
k−1)ak.

But because of rounding errors, Qk−1 does not have truly orthogonal columns. In
modified Gram–Schmidt (MGS) we compute the length of the projection of w = ak

onto q1 and subtract that projection (and the rounding errors) from w. Next we
compute the length of the projection of the computed w onto q2 and subtract that
projection (and the rounding errors) from w, and so on, but always orthogonalizing
against the computed version of w. Evaluated from right to left:

w = (I − qk−1q
t
k−1) . . . (I − q2q

t
2)(I − q1q

t
1)ak.

If the computed Qt
k−1Qk−1 = I + E, then this is very nearly the same w that would

be computed by
w = (I −Qk−1(Q

t
k−1Qk−1)

−1Qt
k−1)ak

where we replace (Qt
k−1Qk−1)

−1 by I − E, and is much “more orthogonal” to Qk−1

than the CGS w.


