Bisection, Secant and Newton’s Methods

We look at three fundamental methods for finding roots of a function f : R — R. There are
many such methods, some take advantage of the guaranteed smoothness of polynomials and
can work with complex roots, some are hybrids (usually combining bisection with other
techniques), and so on. For functions of more than one variable the situation is more
complicated, but if the function is smooth, most are variations on the Newton/Secant idea.

We’ve looked in detail at each of the Bisection, Secant, and Newton’s methods earlier, so the
point here is to compare and contrast.

These methods are to approximate z* € R such that f(z*) = 0. The perspective is that
along with other input data, the user will provide a routine which will return f(z), given z.
The “Speed” category gives the order of convergence (« and asymptotic error constant (L)
under the assumption that the method converges to a simple root. Since Newton’s method
requires the evaluation of f and f’ at each iteration, we also give ay and Ly, the convergence
parameters per function evaluation rather than per iteration. This allows a more equitable
comparison in the general purpose setting.

In the table, the statement “x ~ x*” means for x near x*. Of course, this is ambiguous: not

only do we not know what “near” means, but we don’t know what x* is, either. So we are
basically saying “for = close (or close-enough) to the unknown number z*”.

Method ‘ Bisection ‘ Newton ‘ Secant
Input Req’s |e f € C°[a,b]) o f € Cl(near z*) |e f € C'(near z*)
e [a,0] : f(a)f(b) <0 ® 1y~ ® 1o, r ~ 1
o f:sign(f(x)): = €a,b] |o f: f(z): z~a* |e f: f(z): z~a*
o [fl(x): z =~ a*
Speed ea=oar=1 o =2 o o=y~ 162
° af ~ 1.41
oL =1/2 = |7 o L=L;~|imts
° Lf A L0 i
Convergence | e Yes e Yes, if g =~ z* e Yes, if xg, 27 =~ x*
e Error bound e Error estimate e Error estimate
e ¢ priori iteration count | @ May not converge | @ May not converge
e May overflow e May overflow

