Rate of Convergence

The sequences $w_{n}=1 / \log _{2}(n), x_{n}=1 / n, y_{n}=1 / n^{2}$, and $z_{n}=1 / 2^{n}$ all converge to 0 . How fast? Well, $w_{8}=1 / 3, x_{8}=1 / 8, y_{8}=1 / 64$, and $z_{8}=1 / 256$ is true, but doesn't really convey how slow $w \rightarrow 0$, or how fast $z_{n} \rightarrow 0$. We use functions like these, and more generally $1 / n^{p}$ and $1 / c^{n}$ as yardsticks (or benchmarks) with which to compare the speed of convergence of algorithms.

In our context, we are usually trying to compute better and better approximations p_{n} to some value p, and we want to know how fast the error $e_{n}=\left|p-p_{n}\right|$ is converging toward 0 . It is nice to be able to say $p_{n} \rightarrow p$ (our approximations will eventually be close to the answer), but will it take a second or a week? In the example above $w_{512}>10^{-1}$, but $z_{30}<10^{-9}$.

We will these standard sequences above as benchmarks. If a sequence converges about as slow as the w_{n}, we will say it has a logarithmic rate of convergence, but if it goes fast like z_{n}, we will say its rate of convergence is exponential.

Here is the formal definition. Think of β_{n} as one of the sequences given above. If $\left\{\beta_{n}\right\}$ is a positive sequence converging to 0 , then we say that $p_{n} \rightarrow p$ with rate of convergence β_{n} if $\exists N$ and $k>0$ such that $\forall n>N$,

$$
\left|p_{n}-p\right| \leq k \beta_{n} .
$$

In this case we write $p=p_{n}+\mathrm{O}\left(\beta_{n}\right)$.
Now suppose $p_{7} \approx p$. What does that mean? What about p_{18} ? Well, if we can write $p_{n}=p+\mathrm{O}\left(1 / n^{3}\right)$, then we know that $p_{n} \rightarrow p$ at least as fast as $k / n^{3} \rightarrow 0$, for some constant k, and if k is not too big, it is probably safe to say that p_{18} is about $(18 / 7)^{3} \approx 17$ times more accurate than is p_{7}.

In the same way that we have just measured the error in a discrete setting, we can measure the error associated with a continuous parameter. Suppose $\lim _{x \rightarrow 0} f(x)=L$. How fast? We say that $f(h) \rightarrow L$ as $h \rightarrow 0$ with rate of convergence h^{q} if $\exists \delta$ and $k>0$ such that $\forall|h| \leq \delta$,

$$
|f(h)-L| \leq k h^{q} .
$$

We write $f(h)=L+\mathrm{O}\left(h^{q}\right)$. The idea here is that we are approximating L by $f(h)$, and we would like to compare $|f(h)-L|$ to h^{q}, because we have a feeling for how fast $h^{q} \rightarrow 0$.

For example, $\lim _{x \rightarrow 0} \sin (x)=0$. So for small $x, \sin (x) \approx 0$. But we can do better:

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots
$$

so we can write $\sin (x)=0+\mathrm{O}(x)$, or to give more information $\sin (x)=x+\mathrm{O}\left(x^{3}\right)$, or even more: $\sin (x)=x-x^{3} / 6+\mathrm{O}\left(x^{5}\right)$, etc.

