Rate of Convergence

The sequences $w_n = 1/\log_2(n)$, $x_n = 1/n$, $y_n = 1/n^2$, and $z_n = 1/2^n$ all converge to 0. How fast? Well, $w_8 = 1/3$, $x_8 = 1/8$, $y_8 = 1/64$, and $z_8 = 1/256$ is true, but doesn't really convey how slow $w \to 0$, or how fast $z_n \to 0$. We use functions like these, and more generally $1/n^p$ and $1/c^n$ as yardsticks (or benchmarks) with which to compare the speed of convergence of algorithms.

In our context, we are usually trying to compute better and better approximations p_n to some value p, and we want to know how fast the error $e_n = |p - p_n|$ is converging toward 0. It is nice to be able to say $p_n \to p$ (our approximations will eventually be close to the answer), but will it take a second or a week? In the example above $w_{512} > 10^{-1}$, but $z_{30} < 10^{-9}$.

We will these standard sequences above as benchmarks. If a sequence converges about as slow as the w_n , we will say it has a logarithmic rate of convergence, but if it goes fast like z_n , we will say its rate of convergence is exponential.

Here is the formal definition. Think of β_n as one of the sequences given above. If $\{\beta_n\}$ is a positive sequence converging to 0, then we say that $p_n \to p$ with rate of convergence β_n if $\exists N$ and k > 0 such that $\forall n > N$,

$$|p_n - p| \le k\beta_n.$$

In this case we write $p = p_n + O(\beta_n)$.

Now suppose $p_7 \approx p$. What does that mean? What about p_{18} ? Well, if we can write $p_n = p + O(1/n^3)$, then we know that $p_n \to p$ at least as fast as $k/n^3 \to 0$, for some constant k, and if k is not too big, it is probably safe to say that p_{18} is about $(18/7)^3 \approx 17$ times more accurate than is p_7 .

In the same way that we have just measured the error in a discrete setting, we can measure the error associated with a continuous parameter. Suppose $\lim_{x\to 0} f(x) = L$. How fast? We say that $f(h) \to L$ as $h \to 0$ with rate of convergence h^q if $\exists \delta$ and k > 0 such that $\forall |h| \leq \delta$,

$$|f(h) - L| \le kh^q$$

We write $f(h) = L + O(h^q)$. The idea here is that we are approximating L by f(h), and we would like to compare |f(h) - L| to h^q , because we have a feeling for how fast $h^q \to 0$.

For example, $\lim_{x\to 0} \sin(x) = 0$. So for small x, $\sin(x) \approx 0$. But we can do better:

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots,$$

so we can write $\sin(x) = 0 + O(x)$, or to give more information $\sin(x) = x + O(x^3)$, or even more: $\sin(x) = x - x^3/6 + O(x^5)$, etc.