Arnoldi

Given

$$
A \in \mathbb{R}^{n \times n}, \quad b \in \mathbb{R}, \quad\|b\|_{2}=\alpha_{0}
$$

Let's investigate the Gram-Schmidt orthogonalization of the columns of

$$
C=\left[b, A b, \ldots, A^{m-1} b\right]
$$

The Arnoldi method does this, giving a Hessenberg matrix H such that

$$
A V=V H+w e_{m}^{t}, \quad V^{t} V=I_{m}, \quad V^{t} w=0
$$

Let's assume that $h_{j+1, j} \neq 0, j=1,2, \ldots, m-1$ (thus H is unreduced). The orthogonal projector onto the column space of C is $V\left(V^{t} V\right)^{-1} V^{t}=V V^{t}$, thus

$$
V V^{t} A^{k} b=A^{k} b, \quad k \leq m-1
$$

and the Gram-Schmidt $Q R$ factorization we wanted is

$$
C=V R, \quad \text { with } R \equiv \alpha_{0}\left[e_{1}, H e_{1}, \ldots, H^{m-1} e_{1}\right] \text { and } r_{i i}=\alpha_{0} \prod_{j=1}^{m-1} h_{j+1, j}
$$

Now

$$
H R e_{k}=R e_{k+1}, \quad k=1,2, \ldots m-1
$$

means the companion matrix (rational canonical form) for H is

$$
F=R^{-1} H R
$$

So, if q_{H} is the characteristic polynomial of H, then

$$
q_{H}(x)=x^{m}-\sum_{i=0}^{m-1} c_{i} x^{i}, \quad \text { where } c=R^{-1} H R e_{m}
$$

Finally, if $p(x)=x^{m}-\sum_{i=0}^{m-1} a_{i} x^{i}$, then $p(A) b=A C e_{m}-C a$, and remarkably

$$
q_{H}=\underset{p \in \mathcal{M} \text { onic } c_{m}}{\operatorname{argmin}}\|p(A) b\|_{2} .
$$

We have just connected a Hessenberg form, a $Q R$ factorization, a companion form, and a variational principle all under the Arnoldi umbrella, but can't resist squeezing in a few more players: An unreduced Hessenberg matrix with multiple eigenvalues is not diagonalizable. Thus, if our A is diagonalizable, then its eigenvalues are distinct. Suppose $A X=X \Lambda$ is a diagonalization of A. Then

$$
\begin{aligned}
C & =\left[b,\left(X \Lambda X^{-1}\right) b,\left(X \Lambda X^{-1}\right)^{2} b, \ldots,\left(X \Lambda X^{-1}\right)^{m-1} b\right] \\
& =X\left[X^{-1} b, \Lambda X^{-1} b, \Lambda^{2} X^{-1} b, \ldots, \Lambda^{m-1} X^{-1} b\right] \\
& =X \operatorname{diag}\left(X^{-1} b\right)\left[e, \Lambda e, \Lambda^{2} e, \ldots, \Lambda^{m-1} e\right] \\
& \equiv Y W .
\end{aligned}
$$

Hopefully you recognize the rightmost factor W as a Vandermonde matrix on the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Now if we take $m=n, F=R^{-1} H R=C^{-1} A C$ is a companion form of A, whose eigenvalues are Λ, while the eigenvectors of A are the columns of $Y=X \operatorname{diag}\left(X^{-1} b\right)=C W^{-1}$.

