## Adaptive Quadrature

$$
f^{(k+1)}(\xi)
$$

We know neither $f^{(k+1)}$ nor $\xi$, so can we actually use the truncation error formulas?
Let $I \equiv \int_{a}^{b} f(x) d x$, and consider the Simpson's approximation

$$
I=S(a, b)+E(a, b) \equiv \frac{h}{3}\left(f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right)-\frac{h^{5}}{90} f^{(4)}(\xi)
$$

and the two Simpson's approximations over the halved interval:

$$
\begin{aligned}
I & =S\left(a, \frac{a+b}{2}\right)+E\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)+E\left(\frac{a+b}{2}, b\right) \\
& =S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-\frac{(h / 2)^{5}}{90} f^{(4)}\left(\xi_{l}\right)-\frac{(h / 2)^{5}}{90} f^{(4)}\left(\xi_{r}\right) .
\end{aligned}
$$

Now we make a wish: assume

$$
f^{(4)}(\xi) \approx f^{(4)}\left(\xi_{l}\right) \approx f^{(4)}\left(\xi_{r}\right) \quad(\text { wish })
$$

Then

$$
\begin{aligned}
I & =S(a, b)-\frac{h^{5}}{90} f^{(4)}(\xi) \\
& \approx S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-2 \frac{(h / 2)^{5}}{90} f^{(4)}(\xi) \\
& =S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-\frac{1}{16} \frac{h^{5}}{90} f^{(4)}(\xi)
\end{aligned}
$$

or

$$
E \equiv S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-S(a, b) \approx \frac{15}{16} E(a, b) \approx 15\left(E\left(a, \frac{a+b}{2}\right)+E\left(\frac{a+b}{2}, b\right)\right)
$$

This is an error estimate that we have in our hand; not an error formula nor an upper bound, but a computed approximation to the actual error. Methods other than Simpson's method would give analogous results, but with weights different than $15 / 16$ and $1 / 16$. If you are worried about (wish), then you might use 10 in place of 15 , but the worry is misguided if the algorithm that we are developing proceeds very many steps.

So what? Well suppose we want to compute an approximation to $I$ with error at most $\tau$. Then if $E \leq 15 \tau$ we have reason to believe - modulo (wish) - that our finer approximation $I \approx S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)$ will do.

What if $E>15 \tau$ ? Set $a_{l}=a, b_{l}=\frac{a+b}{2}=a_{r}$, and $b_{r}=b$, and notice that we can apply the analysis above to each of the integrals $I_{l} \equiv \int_{a_{l}}^{b_{l}} f(x) d x$ and $I_{r} \equiv \int_{a_{r}}^{b_{r}} f(x) d x$. So (taking $I_{l}$ first), compute $E_{l} \equiv S\left(a_{l}, \frac{a_{l}+b_{l}}{2}\right)+S\left(\frac{a_{l}+b_{l}}{2}, b_{l}\right)-S\left(a_{l}, b_{l}\right)$. If $E_{l} \leq 15(\tau / 2)$, then we take $I_{l} \approx S_{l} \equiv S\left(a_{l}, \frac{a_{l}+b_{l}}{2}\right)+S\left(\frac{a_{l}+b_{l}}{2}, b_{l}\right)$, if not then we split $I_{l}$ into $I_{l l}$ and $I_{l r}$, etc... It may take many splittings to achieve the error tolerance (which gets halved at each splitting), but eventually we will satisfy the $E_{*}<15\left(\tau / 2^{k}\right)$ condition and then we add up our sub-approximations to get an approximation $S_{l}$ to $I_{l}$. When the same is done for $I_{r}$ we have $I=I_{l}+I_{r} \approx S_{l}+S_{r}+E_{l}+E_{r}$, where - modulo (wish) $-\left|E_{l}+E_{r}\right| \leq \tau / 2+\tau / 2=\tau$.

All of this discussion can be reduced to a recursive algorithm $R(a, b, \tau)$ :

$$
\begin{aligned}
\text { If } S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-S(a, b)<15 \tau: & \text { Set } S=S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right) \text { and quit. } \\
\text { Else: } & \text { Set } S=R\left(a, \frac{a+b}{2}, \tau / 2\right)+R\left(\frac{a+b}{2}, b, \tau / 2\right) .
\end{aligned}
$$

