
Math 4353/5393 – Numerical Linear Algebra Spring 2024
Program 4 Due Wednesday, May 1, 2024

1. Write the subroutine houseqr to compute the QR factorization.
houseqr.m should have as its first line:

function [A,u1] = houseqr(A)

It should implement the Householder QR factorization without
explicitly forming Q. The ũk vectors should overwrite A in the strictly
lower triangle, and the ũk(1) scalars should be stored in u1(k). R will
be stored in the upper triangle of A.

2. Write the subroutine houseqtact to compute Qtb, given the
“decapitated” ũ1, . . . , ũn stored in the strictly lower triangle of Qu
and their “heads” in u1 (so u1 = (ũ1(1), ũ2(1), . . . , ũn(1))

T .
houseqact.m should have as its first line:

function y = houseqtact(Qu,u1,b)

It should implement the algorithm we discussed in class/handout to
find QT b.

3. Hand in and email me the output, prog4run.txt, of the test routine
NLAProg4test.m and your houseqr.m and houseqtact.m

Notes:

(a) For efficiency, we do not form Q explicitly when doing the
Householder QR factorization, we just save the ũi over the
columns of A, but below R1. This is why we need the
HOUSEQTACT routine.

(b) Please notice how this admittedly opaque storage scheme results
in remarkably little data movement and efficient memory use.

(c) Remember to document your code. This means using comment
lines to describe all input and output variables, and to describe
what the code is doing when it is not obvious to the uninitiated.

(d) Don’t divide by 0.

(e) You might be interested to see how this method compares to
your mgs and cgs code. If you have the interest, try running a
test to see which, if either, of xqr or xmgs or xcgs is consistently
closer to xtrue.


